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Abstract—In crowdsensing systems, a huge amount of sensory
data may be uploaded from the mobile devices participating
in a sensing campaign and may lead to the overloading in the
network infrastructures of cellular networks or Wi-Fi. In order
to reduce the upload traffic volume, we present a distributed data
aggregation scheme among mobile devices over the opportunistic
network. Using short range communication (e.g., Bluetooth or
Wi-Fi Direct), our scheme utilizes position-based routing to
forward sensory data to the appropriate mobile devices that can
effectively perform the data aggregation on sensory data collected
from the other devices so that the aggregation performance is
improved. Our simulation results show that the proposed scheme
can significantly improve aggregation performance compared
with other aggregation schemes.

Index Terms—Crowdsensing, opportunistic networks, data ag-
gregation, position-based routing

I. INTRODUCTION

Mobile crowdsensing [1] has become one of the most viable

sensing paradigms for realizing environment data collection

campaigns (e.g., noise level [2], traffic condition [3], etc.)

through widely scattered mobile devices (e.g, smartphones)

and has created a broad range of applications bringing con-

venience to people’s daily life [4]–[6]. For example, a large

scale spectrum monitoring [6] can be a promising application

and be expected to be utilized for improving spectrum uti-

lization by identifying spectrum opportunities and facilitating

spectrum sharing, which is considered as one of key features in

future wireless communication systems [7]. In crowdsensing

systems, compared to the sensing infrastructures consisting of

dedicated sensor nodes deployed in static locations, the system

organizers can gather sensory data covering wide urban area

by scattered mobile devices without a large cost incurred for

maintaining those devices (e.g., battery exchange).

In crowdsensing systems, it is common that the sensory

data sampled by mobile devices are uploaded to the cloud

servers through the base stations (BSs) of cellular networks

(e.g., 3G, LTE) or Wi-Fi access points (APs) that are connected

to the Internet [8]. From the user’s perspective, however, it is

preferable to reduce the total data amount that goes through

the cellular networks as much as possible, since the network

cost is relatively high [9]. Moreover, it is common for users

to choose cellular data plans that limit the usable data volume

per a specific timespan (e.g., 3GB per month). On the other

hand, since Wi-Fi APs are required to operate on the same fre-

quency bands with the other wireless technologies [10] (e.g.,

Bluetooth) and to share the scarce wireless resources with

these technologies, it is also preferable to reduce the wireless

resources consumed by Wi-Fi in uploading sensory data. In

addition, since the coverage of Wi-Fi APs are limited [11],

there may be no usable Wi-Fi APs at the timing of uploading

in the first place.

In this paper, we tackle these challenges by proposing a

distributed data aggregation scheme executed on the partici-

pating mobile devices to achieve the upload traffic reduction

of sensory data. We assume multiple sensory data that were

sampled in close proximity and timing have the space and time

correlation, and therefore, they can be aggregated into one

data, which can be represented with fewer bytes than the total

bytes required to represent the original data. In this context,

the aggregation performance can be improved by collecting

as many correlated sensory data as possible at relatively small

number of mobile devices and by performing aggregation on

the collected data all together. To facilitate the process of this

data gathering, in our scheme, immediate uploading of sensory

data after each data sampling is deferred and the opportunistic

contacts between mobile devices along with the mobility of

users or vehicles are utilized for data exchange between the

devices. Specifically, when two mobile devices are located in a

direct communication range, they determine which data should

be transferred to the other device and the selected data are

exchanged between two devices using short range wireless

link over Bluetooth, Wi-Fi Direct, etc.

To improve the aggregation performance, it is important to

consider how to route each sensory data over the opportunistic

network. To this aim, in our aggregation scheme, position-

based routing [12] is utilized. Specifically, when a pair of

devices meet, they exchange their locations acquired with a

positioning system (e.g., Global Positioning System (GPS)).

Then, each sensory data is forwarded to the other device if

the distance from the location where the data was sampled

is decreased compared with the case without forwarding. By

doing so, we can expect that each sensory data is held by the

mobile device that is currently locating at near the position

where the data was sampled. This increases the possibility

that the multiple sensory data with high spatial correlation

are held by relatively small number of devices, resulting in

improvement of aggregation performance.

The simulation results demonstrate that our scheme can

achieve high aggregation performance compared with the other
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Fig. 1. Division both in space and time domains.

schemes that utilize contact history [13].

II. SYSTEM MODEL

We consider a mobile crowdsensing system that consists of

mobile devices and communication infrastructures providing

mobile Internet access (3G BS, LTE BS, Wi-Fi AP, etc.).

As for the mobile devices, we suppose that the devices such

as smartphones, tablets, and in-vehicle electronic devices. At

various locations and timings, each mobile device samples

sensory data (e.g., noise level, wireless signal strength, etc.)

with embedded sensors or external sensors connected to the

mobile device. We suppose that the mobile devices can obtain

the longitude and latitude coordinates of their current location

using a positioning system (e.g., GPS). The acquired location

information is used to attach the location where a sensing

is performed to each sampled data and is used for position-

based routing in our aggregation scheme. The sampled data are

deferred from immediate uploading to the server and are stored

in the local storage of the mobile device for a certain period

of time. During the period, when two mobile devices meet

(i.e., when they are located within the direct communication

range of a short range wireless link), they transmits a subset

of data to the peer device based on the algorithm described in

Section III. After some time, each device uploads all of the

sensory data held in own storage to the server using cellular

network or Wi-Fi.

In the following, the set of the mobile devices is denoted by

U = {u1, u2, ..., uN}, where N is the number of the mobile

devices. Each device periodically (each Tsen) performs sensing

and acquires a sensory data. Also, each device periodically

(e.g., every 3 hours) uploads all of the sensory data currently

held in own storage to the server located on the Internet. Each

sensory data contains the time and the latitude and longitude

coordinates at which the sensing was performed, and the value

(e.g., noise level) sampled by a sensor. For a sensory data r,

we denote the location coordinates, the time, and the value by

loc(r), time(r), and value(r), respectively.

We assume that sensory data obtained in close proximity

and timing have a significant correlation and they can be
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Fig. 2. An example of applying an aggregation operator.

aggregated by applying an aggregation operator (such as maxi-

mum, minimum, or average), which eliminates redundancy. To

determine the range of sensory data that can be aggregated

together, we discretize the space and the time in which

sampling occurs as follows. In space domain, the whole two

dimensional area is divided into grid cells, denoted as celli, as

shown in Fig. 1. Similarly, the time is divided into timeslots,

denoted as tsi, of equal length Tpar, as shown in Fig. 1. Using

the notations, the necessary and sufficient condition for a set of

sensory data ri (i = 1, 2 . . . ,M) to be able to be aggregated

is that there exist cells and a timeslot tst that satisfy:

loc(ri) ∈ cells ∧ time(ri) ∈ tst, ∀i ∈ {1, ...,M}. (1)

We denote the aggregated data by agg({r1, . . . , rM}). Fig. 2

shows an example of applying the maximum operator to three

sensory data. By aggregating M sensory data, the total volume

of the sensory data can be reduced to approximately 1/M of

the total volume before aggregation.

To indicate its presence to the devices within the commu-

nication range, each mobile device broadcasts a hello packet
periodically every Thel seconds. A receiver side of a hello

packet establishes a connection with the sender side, and

exchanges the device information, which includes the location

coordinates acquired by a positioning system. After that, based

on the device information exchanged, each device transfers a

subset of sensory data held in own storage to the peer device.

Finally, the connection between two devices is terminated. It

is possible to further transmit sensory data received from one

device to the other devices. For example, suppose that mobile

devices u1 and u2 met each other and u2 received sensory

data from u1. After some time, when u2 meets another device

u3, u2 is able to transmit sensory data sampled itself together

with the data received from u1 to u3.

We suppose that aggregation operators are applied only at

immediately before each uploading. This means that, during

a meeting, sensory data are forwarded between devices in its

original (i.e., raw) form. This is required if we want to use

median as the aggregation operator [14].

III. AGGREGATION SCHEME

In order to improve aggregation performance, it is important

to collect as many correlated data, which can be aggregated
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Fig. 3. An example of utilization of position-based routing for data aggregation in opportunistic network.

together, as possible at relatively small number of mobile

devices. To achieve this, we utilize position-based routing

when a pair of mobile devices meet. In the following, we

explain how position-based routing is performed over an

opportunistic network using an example illustrated in Fig. 3.

In Fig. 3 (a), at time t1, there are three mobile devices

(i.e., u1, u2, and u3) located in the same cell, which is called

cell1 hereafter. Since each mobile device performed a sensing

while staying at cell1, each device holds one sensory data,

denoted by r1, r2, and r3, in its storage, and they can be

aggregated together if a device acquires some of the three.

Although they are located in the same cell, we suppose that

they don’t meet each other while staying at cell1. Then, at

time t2 (Fig. 3 (b)), u2 and u3 move in a direction apart

from cell1. In general, without special treatment, correlated

sensory data tend to be moved to the locations far away

from one another along with the devices’ movement, as time

passes. On the other hand, we suppose that the other devices,

denoted by u4 and u5, are approaching cell1. At time t3
(Fig. 3 (c)), u2 and u3 meet u4 and u5, respectively. During the

meeting, u2 transmits r2 to u4 because the current geographic

coordinates of u4 have a smaller distance from cell1, in which

r2 was sampled, compared with the u2’s current coordinates.

Similarly, u3 forwards r3 to u5 because u5 is currently located

at the coordinates that have a smaller distance from cell1
compared with the u3’s current coordinates. By doing so, at

time t4 (Fig. 3 (d)), when u4 and u5 meet u1, they transmit

r2 and r3 to u1, respectively. Finally, u1 can aggregate three

sensory data and upload the aggregated data to the server.

The above mentioned example can be generalized and

formalized as Algorithm 1. This algorithm is executed indi-

vidually at each device when a pair of mobile devices meet,

to determine the subset of sensory data to be forwarded to the

other device during the contact. Before executing Algorithm

1, we suppose that they exchange device information, which

includes devices’ current coordinates. Then, each device exe-

cutes the procedure named subset_data_forwarded in

Algorithm 1, where uself and upeer represent itself and the

peer, respectively. In this procedure, S will eventually become

the subset of sensory data, all of which will be forwarded to

upeer. To compute S, for each sensory data ri held in the

Algorithm 1 Determining the subset of sensory data to be

forwarded to the peer device

procedure distance_from_origin(u, r)
1: return the Euclidean distance between u’s current coor-

dinates and the coordinates of the centroid of the cell in

which r was sampled.

procedure subset_data_forwarded(uself , upeer)

2: S ← ∅
3: for all sensory data r held in uself ’s local storage do
4: dself ← distance_from_origin(uself, r)
5: dpeer ← distance_from_origin(upeer, r)
6: if dpeer < dself then
7: S ← S ∪ {r}
8: end if
9: end for

10: return S

local storage of uself , the device checks if upeer is located

at the coordinates closer to the destination coordinates of ri
than the uself ’s current coordinates. If so, uself adds ri to

S. Here, we adopt the centroid’s coordinates of the cell in

which ri was sampled as the destination coordinates of ri for

position-based routing. For example, in the case in Fig. 3,

the destination coordinates of r1, r2, and r3 are all set to the

centroid’s coordinates of cell1. By doing so, we can expect that

each sensory data is held by the device that is currently located

at the coordinates relatively close from the data’s destination

coordinates. This increases the possibility that the multiple

sensory data that can be aggregated together will be intensively

collected by the relatively small number of devices and results

in better aggregation performance. In the following, we call

the cell in which a data was sampled as origin cell of the

data.

IV. EXPERIMENTAL EVALUATION

We conducted simulation-based experiments to evaluate the

aggregation performance of our proposed scheme. To generate

mobile devices’ mobility, we extracted the road network of

a 1.5 km × 1.5 km area in Kyoto as a graph from the
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OpenStreetMap (OSM)1 repository. The graph extracted is

shown in Fig. 4, which consists of 1,614 vertices and 2,124

edges. In the experiments, 225 mobile devices are deployed

within the area. The initial position of each mobile device is

randomly determined from the set of vertices in the graph.

The mobility of the devices are generated as follows: (i) At

the beginning of a simulation run, each mobile device selects

its destination vertex randomly from the set of vertices and

(ii) moves to the destination along the shortest path from

the current location, with a speed determined randomly from

[0.5, 1.5] m/s; After reaching the destination vertex, (iii) the

device stays at the destination for a duration randomly selected

from [60, 300] s; Then, (iv) the device selects a new destination

vertex randomly and goes to the step (ii). The sensing period

Tsen is set to one second, which means that for each mobile

device one sensory data is generated every Tsen. The width

of a cell and the length of a timeslot are set to 250 m and

100 s, respectively. The hello period Thel is set to 10 s. The

communication range between devices is set to 50 m. The

warmup time and simulation time are set to 2,000 s and 5,000

s, respectively. Table I shows the parameters and their values

used in the simulations. For each experiment, the simulation

is executed for 10 times with different random seeds and the

results are averaged over the 10 runs.

In the experiments, in order to measure the aggregation

performance, we assume that the data volume of a single

sensory data is regarded as 1. We also assume that the

data volume of one aggregated data generated by aggregating

multiple sensory data has the same data volume as a single

sensory data. Thus, by aggregating n(∈ N) sensory data, the

data volume of the aggregated data is regarded to be 1. Similar

to a measure used in the area of data compression [15], we

introduce aggregation ratio, which measures the aggregation

performance. The aggregation ratio is defined as:

aggregation ratio =
data volume before aggregation

data volume after aggregation
. (2)

1https://www.openstreetmap.org

TABLE I
THE PARAMETERS USED IN THE SIMULATIONS.

Parameter Value
Number of mobile devices 225
Simulation time 5,000 s
Communication range 50 m
Area size 1.5 km × 1.5 km
Movement speed [0.5, 1.5] m/s
Pause duration at destination [60, 300] s
Sensing period 1 s
Hello period 10 s
Cell width 250 m
Timeslot length 100 s

A. Aggregation performance

We first examine aggregation performance of various aggre-

gation schemes. We compared the following schemes:

(a) Inner aggregation only. No communication link available

between devices and each mobile device performs aggre-

gation only on the sensory data sampled by itself.

(b) Ranking-based. In ranking-based aggregation scheme,

each mobile device is assigned a rank and when two

mobile devices meet, the mobile device that has a lower

rank forwards all of the sensory data held in own storage

to the peer. There exist three types in this scheme:

(1) ID-based. Each mobile device is assigned a randomly

selected unique identifier, which is fixed throughout

a simulation run, and the identifier is regarded as its

rank.

(2) CH-fixed. By utilizing the contact history among mo-

bile devices, ranks are assigned to the mobile devices

so that the relatively higher ranks are assigned to

the devices that tend to meet the other devices more

frequently. In CH-fixed, one fixed rank is assigned

for each mobile device throughout a simulation run.

(3) CH-dynamic. The mobile devices are assigned ranks

in the similar manner to CH-fixed, but the ranks are

dynamically changed based on the dynamics of the

contact pattern recorded in the contact history.

More details on ranking-based aggregation scheme can

be found in [13].

(c) Position-based routing. This is the aggregation scheme

explained in Section III. There exist two types in the

scheme for the purpose of investigating the impact on

the destination setting in position-based routing.

(1) PR-origin. The destination coordinates of each sen-

sory data is set as the centroid’s coordinates of the

origin cell, as described in Section III.

(2) PR-random. The destination coordinates of each sen-

sory data is set as the centroid’s coordinates of a

randomly selected cell among all the cells (i.e., 36

cells) in the simulation area.

Fig. 5 shows the aggregation performance of each scheme

during the simulation time from 0 to 5,000. From Fig. 5,

we can see that the aggregation ratios of the aggregation
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Fig. 6. CDF of the distance between the location of the device that currently
stores a sensory data and the location where the data was sampled at elapsed
time (a) 500 s, (b) 1,000 s, (c) 1,500 s, and (d) 2,000 s since the data was
sampled.

schemes increase with the time elapsed since the beginning

of the simulation. This means that a larger uploading period

can lead to an increase in the aggregation performance. We

also observe that PR-origin achieves the highest aggregation

ratio among the six schemes. For instance, the aggregation

ratio of PR-origin is about 40 percent higher than that of

CH-dynamic at time 5,000. Interestingly, PR-random even

outperforms CH-dynamic when the elapsed time is larger

than 3,000. This indicates that position-based routing is still

effective in some extent to improve aggregation performance

even when the destination coordinates of sensory data are set

to the coordinates that are not related to their origin cell.

To investigate how the position-based routing affects the

distribution of the sensory data over the simulation area, we

calculated the Cumulative Distribution Function (CDF) of the

distance between the location of a sensory data (i.e., the
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Fig. 7. Impact of the hello period on the aggregation performance. Each data
point represents the aggregation ratio at time 5,000 after the beginning of the
simulation. The error bars show the standard deviation.

current location of the device that stores the data) and the

location where the data was sampled. The result is shown in

Fig. 6, where sub-figures (a), (b), (c), and (d) represent CDFs

at elapsed time 500 s, 1,000 s, 1,500 s, and 2,000 s since the

data was sampled, respectively. From Fig. 6, we observe that

almost all the sensory data are located within 500 meters in

PR-origin for all cases, whereas, in other schemes, the sensory

data are located at much broader range of the locations in the

simulation area. This suggests that spatially correlated data can

be gathered more effectively by the devices located near the

origin cell of those data in PR-origin than the other schemes.

B. Impact of the length of hello period

Lastly, we demonstrate how the length of hello period

affect the aggregation performance. In the experiment, we vary

the length of hello period from 10 s to 180 s and measure

the aggregation ratio for each length at time 5,000 after the

beginning of the simulation for all schemes.

The results are shown in Fig. 7. From Fig. 7, we can see

that the aggregation ratio decreases with the increase of the

length of hello period in all schemes, because the commu-

nication opportunities between devices are lost. Although the

aggregation ratio in PR-origin decreases at faster rate than

the other schemes, PR-origin still achieves better aggregation

performance than the others.

V. RELATED WORK

Various types of crowdsensing (or participatory sensing)

systems has been proposed in the literature [2], [3], [16]–[18].

However, in these systems, a general framework achieving the

upload traffic reduction has not been explored enough.

In [19], [20], crowdsensing systems that exploit direct com-

munications between mobile devices are proposed to achieve

privacy preserving data gathering. In these systems, the sensor

readings are exchanged among participating nodes [19] or

collected along the tree-like paths [20] so that the users’

privacy is preserved without sacrificing data utility.



COUPON [21] utilizes opportunistic contacts between de-

vices and performs data aggregation on these devices, aiming

to reduce the data volume of the sampled data. In COUPON,

similar to the problem setting in traditional wireless sensor

networks, some sink nodes are deployed in the network,

and the sampled data are opportunistically forwarded to the

sink nodes through the data aggregation performed on the

forwarding nodes. Our problem setting differs from COUPON

in that there are no special sink nodes in the network and

that any mobile device can upload sensory data directly to the

server through cellular networks or Wi-Fi.

The authors of [22], [23] propose a data gathering scheme

for Floating Car Data (FCD), where sensory data are collected

and aggregated by moving vehicles using direct vehicle-to-

vehicle communication in vehicular networks. The scheme

is mainly focused on collecting data from vehicles within

relatively short period of time (e.g., 10 seconds [23]). Thus,

opportunistic contacts that occur during much longer timespan

(e.g., from several minutes to several hours) are not intended

to be utilized. In our proposed scheme, the utilization of

opportunistic contacts is a key factor to improve aggregation

performance.

In our previous work [13], we proposed a data aggregation

scheme of utilizing the contact history among mobile devices.

As shown in Section IV, contact history-based schemes exhibit

lower aggregation performance compared with the schemes

that utilize position-based routing. However, contact history-

based schemes do not need to know the exact locations of

mobile devices but need only a contact information (i.e., a

pair of node identifiers). Thus, contact history-based schemes

are still beneficial in the situations that prevent the organizers

of crowdsensing systems from acquiring the mobile devices’

locations due to some reasons (e.g., concerns on battery

consumption by GPS).

VI. CONCLUSION

In this paper, we proposed a distributed data aggregation

scheme to mitigate the traffic load generated for uploading

sensory data acquired by the mobile devices participating

in a crowdsensing campaign. Experimental results based on

simulations with a map-based mobility model show that the

proposed aggregation scheme, which utilizes position-based

routing, improves the aggregation performance over the con-

tact history-based aggregation schemes.

This paper focused on the reduction in the traffic volume

that traverses the cellular networks or Wi-Fi AP. It is also

important to reduce the traffic incurred by the data transfer

between devices, especially when the node’s resource such

as battery power and wireless bandwidth is limited. We will

consider the case as a future direction.
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