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Abstract—Crowdsensing systems exploit widely scattered mo-
bile devices for large scale sensing applications. In crowdsensing
systems, since there is a possibility that a huge amount of
data is uploaded through cellular networks or Wi-Fi, a general
framework for reducing the traffic volume is required to avoid
overloading these network infrastructures. In this paper, we
propose a data aggregation method among mobile devices to
reduce traffic volume incurred by uploading of sensory data. By
utilizing opportunistic contacts between mobile devices, sensory
data are moved using short range communication over mobile
devices so that aggregation performance is improved. To achieve
effective data movement, our method utilizes contact history
among mobile devices, and let the mobile devices that are
frequently contacted by the other devices collect sensory data
intensively from the other devices. Experiments show that our
method can achieve high aggregation performance in various
settings.

I. INTRODUCTION

With recent proliferation and advances in mobile devices

such as smartphones and tablets, mobile crowdsensing [1] has

become a promising way for collecting various environmental

data (e.g., noise level [2], traffic condition [3], etc.) from a

large number of mobile devices, enabling a broad range of

possibilities of optimization in our life. For example, a crowd-

sensing system for large scale spectrum monitoring by scat-

tered mobile devices [4] can be a viable solution to improve

spectrum utilization by identifying spectrum opportunities and

achieving spectrum sharing, which is considered as one of key

features in future 5G communications [5]. In crowdsensing

systems, compared with the sensing infrastructures consisting

of static sensor nodes, the system operators can gather sensory

data covering wide area by scattered mobile devices without

a large cost incurred for maintenance (e.g., battery exchange)

of those devices.
In crowdsensing systems, mobile devices are required to

communicate with base stations (BSs) or access points (APs)

that are connected to the Internet to upload sensory data to the

cloud servers using cellular networks (e.g., 3G, LTE) or Wi-Fi.

However, it is preferable for users to save the amount of data

that goes through cellular networks, since the communication

cost incurred is relatively high [6]. Moreover, it is common

for users to choose cellular data plans that limit the usable

data volume per month. On the other hand, since Wi-Fi is

required to cooperate with other communication systems such

as Bluetooth, which are operating on the same frequency

bands [7], it is also preferable to reduce the consumption of

wireless resources in uploading sensory data using Wi-Fi. In

addition, the coverage of Wi-Fi APs are relatively narrow [8],

there are locations where only cellular networks are available

in uploading sensory data.

In order to cope with such requirements, we propose a data

aggregation method among mobile devices to reduce the traffic

volume incurred by uploading of sensory data. Assuming the

time and space correlation among sensory data, our method

aggregates sensory data that are sampled in close proximity

and timing into an aggregated data, which can be represented

with fewer bytes. To facilitate the reduction of total amount

of data being uploaded, by deferring immediate uploading of

sensory data, we utilize the opportunistic contacts between

mobile devices along with the mobility of users or vehicles.

When two mobile devices are located in direct communication

range, one side transmits sensory data to the other side using

short range wireless technologies such as Bluetooth or Wi-

Fi Direct. Then, the receiver side can collectively aggregate

sensory data that are in own storage and that are received from

the sender side, resulting in a further reduction in the amount

of data compared to the case where aggregation is performed

in each mobile device separately.

To improve the effectiveness of the reduction in data

amount, when a pair of mobile devices meet, it is important

to decide which one acts as the sender (i.e., the other one will

be the receiver), which transmits all the sensory data in own

storage to the receiver. In the proposed method, we assign a

number (called rank) to each mobile device, and when a pair

of devices meet each other, by comparing ranks of each other,

the device that has a lower rank than the other will act as a

sender. By doing so, we can expect that a relatively small

number of mobile devices that have higher ranks than the

others can collect the sensory data by receiving from many

other devices that have relatively lower ranks, resulting in

performance improvement in data aggregation.

In this scheme, a challenging question is how to assign ranks

to mobile devices to facilitate effective data movement over

the opportunistic network among mobile devices. Our method

utilizes contact history among mobile devices and extracts the

values of a centrality measure of the devices, which represent

importance of each device in the network. By assigning a

rank to each device based on its value of centrality measure,

the devices that are frequently contacted by the other devices

tend to be a receiver of sensory data, which is beneficial for
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Fig. 1. Crowdsensing system.

effective data movement.

We conduct simulation-based experiments to show the ef-

fectiveness of the contact history-based rank assignment. As a

result, we find that our method can achieve high aggregation

performance compared to the method that assigns ranks ran-

domly. We also show that dynamic rank assignment according

to changes in contact graph is effective for performance

improvement in data aggregation.

II. SYSTEM MODEL

Fig. 1 shows the overview of our target environment. In

Fig. 1, mobile devices represent portable devices such as

smartphones and tablets that are carried by the users or

vehicles. Mobile devices sample sensory data (e.g., noise level,

signal strength in a frequency band, etc.) with embedded

sensors or external sensors connected to a mobile device

at various locations and timings. Sensory data are stored in

the local storage of a mobile device for a certain period by

deferring uploading to the server. During the period, when a

pair of mobile devices meet each other, i.e., when they are

within the range of direct communication of a short range

wireless interface, one side transmits all sensory data in its

storage to the other side. After some time elapsed, each device

uploads all the sensory data in own storage to the server via

cellular network or Wi-Fi.

In the following, the set of mobile devices are denoted

by U = {u1, u2, ..., uN}, where N is the number of mobile

devices. Each mobile device ui has an unique identifier, which

is denoted by id(ui). Each mobile device performs sensing

periodically. The sampling period is denoted by Tsen (e.g.,

10 sec). Each mobile device periodically, e.g., every 3 hours,

uploads all the sensory data in its storage to the server. Each

sensory data contains the time and the position (e.g., latitude

and longitude) at which the sensing is performed, and the

value obtained by a sensor. For a sensory data r, we denote

the position, the time, and the value by pos(r), time(r), and

value(r), respectively.

We assume that sensory data obtained in close proximity

and timing have a significant correlation and they can be aggre-

gated by applying aggregation operators (such as maximum,

minimum, or average) to eliminate redundancy. To determine

the range of sensory data that can be aggregated together, we
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Fig. 2. Partitioning in (a) space domain and (b) time domain.
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consider the partitioning of space and time as follows. In space

domain, the whole two dimensional area is divided into grid

cells, denoted as celli, as shown in Fig. 2 (a). Similarly, the

time is divided into slots, denoted as tsi, of equal duration

Tpar, as shown in Fig. 2 (b).

A set of sensory data ri (i = 1, 2 . . . ,M) can be aggregated

if and only if there exist a cell cells and a timeslot tst that

satisfy the following condition:

pos(ri) ∈ cells ∧ time(ri) ∈ tst, ∀i. (1)

We denote the aggregated data by agg({r1, . . . , rM}). As

an example, in Fig. 3 we show a case where two sensory

data are aggregated by the maximum operator. By aggregating

M sensory data, the total size of sensory data is reduced to

approximately 1/M of the original size.

Each mobile device periodically broadcasts hello packet
with a period of Thel to inform its presence to the nearby

devices. When a hello packet is received at a mobile device, it

establishes the connection with the sender of the hello packet,

and exchanges device information, which includes the device

identifier and the value of rank (described in Section III). After

that, based on the device information exchanged, one device

will act as the data sender and the other will be the data
receiver. Finally, the data sender transmits all of the sensory

data in its storage to the data receiver, and the connection

between the devices is closed. It is possible to further transmit

sensory data received from one device to the other devices.

For example, suppose that mobile devices u1 and u2 met

each other and u2 received sensory data from u1. After some

time, when u2 meets another device u3, u2 is able to transmit

sensory data sampled itself together with the data received

from u1 to u3.
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Fig. 4. Example of data movement on opportunistic network. (a) u1 transmits
data to u2. (b) u2 transmits data to u1.

In this paper, we assume that aggregation operators are

performed at the mobile devices only immediately before the

uploading of sensory data to the server. In this sense, all

sensory data are transmitted from one device to the other

in its original (or raw) form. This is essential if we want to

use median as the aggregation operator, because in general it

is not possible to further aggregate sensory data that include

data once aggregated before in calculating accurate value of

median [9]. Nevertheless, aggregation can be effective not only

in uploading but also in communication between devices if

we need to reduce the communication overhead to alleviate

the problems such as battery consumption for short range

communication. Such a situation is considered in our future

work.

III. RANK ASSIGNMENT

In this section, we describe how to move sensory data be-

tween mobile devices over the opportunistic network in order

to improve aggregation performance. We first describe why it

is important to decide the appropriate movement direction of

sensory data when a pair of mobile devices meet. Then, we

describe a basic procedure to move sensory data among mobile

devices by introducing ranks assigned to each mobile device.

Finally, we describe how to improve aggregation performance

by assigning ranks by utilizing contact history among mobile

devices.

Fig. 4 shows two cases where opportunistic communications

occur based on the mobility of mobile devices. In the figure,

we consider a situation where three mobile devices exist and

each device holds one sensory data, denoted by r1, r2, and r3
in its storage. In Fig. 4 (a), at time t1, u1 and u2 meet each

other, and u1 transmits sensory data to u2. Then, at time t2,

u1 and u3 meet each other, and u3 transmits sensory data to

u1. Finally, at time t3, u1 and u2 upload r3 and agg({r1, r2})
to the server, respectively. In this case, the amount of data

uploaded is equivalent to the amount of two sensory data. On

the other hand, in Fig. 4 (b) at time t1, u2 transmits sensory

data to u1. Finally, at time t3, u1 uploads agg({r1, r2, r3})

to the server. In this case, the amount of data uploaded is

equivalent to the amount of single sensory data and is reduced

compared to the previous case. The above example suggests

the importance of deciding the movement direction of sensory

data in terms of improvement in aggregation performance.

A. Basic rank assignment

In order to decide movement direction of sensory data, we

assign a rank, which is a number, to each mobile device. The

rank of mobile device ui is denoted by rank(ui). Then, when

a pair of mobile devices meet, the mobile device that has a

lower rank transmits all the sensory data in its storage to the

other mobile device. As the data movement based on the ranks

is repeatedly performed when a pair of mobile devices meet,

we can expect that sensory data are intensively collected by a

relatively small number of mobile nodes that have higher ranks

than the others, which results in improvement in aggregation

performance.

In this scheme, it is important to determine how to assign

ranks to mobile devices. One of the simplest approaches is to

use the identifier value id(ui) as the rank of the mobile device

ui. We call this ID-based ranking. Later in Section III-B, we

describe another approach to rank assignment.

Algorithm 1 Determining movement direction of sensory data

procedure alg1_sub(x1, x2)
1: if x1 < x2 then
2: transmit all the sensory data in its storage to upeer.

3: else
4: receive sensory data from upeer.

5: end if
procedure alg1_main(uself, upeer)

6: if rank(uself ) �= rank(upeer) then
7: call alg1_sub(rank(uself ), rank(upeer)).

8: else
9: call alg1_sub(id(uself ), id(upeer)).

10: end if

Algorithm 1 summarizes the general framework for deter-

mining the movement direction of sensory data. When a pair of

mobile devices meet, after exchanging their device information

including ranks, each mobile device executes alg1_main,

where uself and upeer represent itself and the peer, respec-

tively. If rank(uself ) and rank(upeer) have different values,

the mobile device that has a lower rank transmits its sensory

data to the peer. Otherwise, the same movement direction as

ID-based ranking is adopted.

B. Contact history-based rank assignment

It is known that the human mobility exhibits periodic

behavior and can be predicted with high reliability, because

people tend to move between predetermined locations such as

homes, workplaces, and schools in their daily lives [10], [11].

Exploiting this property, we present a method that utilizes the

contact history among mobile devices for rank assignment.
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Fig. 5 shows the overview of the procedure for rank

assignment based on contact history. First, each mobile device

collects hello packets sent from the nearby devices during each

hello collection cycle, while moving according to the human’s

or the vehicle’s movement in daily life. As shown in Fig. 5,

a hello collection cycle contains multiple rank assignment
cycles, and for each rank assignment cycle the list of the

identifiers of the devices from which at least one hello packet

is received during the rank assignment cycle is recorded at

each mobile device. By this, in each hello collection cycle,

a contact history is created at each mobile device so that it

contains a set of lists of device identifiers, where each list

contains the identifiers of the devices contacted during one

rank assignment cycle. At the end of each hello collection

cycle, each mobile device uploads own contact history to the

server. The length of a hello collection cycle is set to be able

to capture the periodicity in the mobility pattern of the mobile

devices, e.g., 24 hours, while the length of a rank assignment

cycle is set to a smaller value, e.g., 1 hour.

Second, at the server side, based on the contact histories

received from the all mobile devices, a contact graph, in which

each edge represents a contact between two mobile devices

during one rank assignment cycle, is constructed for each of

the rank assignment cycles. Next, for each contact graph, the

centrality values, which represent the importance of each node

in the graph, are calculated. Various centrality measures are

proposed in the literature [12]. Among them, in this paper, we

adopt degree centrality, which is the simplest and best known

centrality1. Degree centrality for a given node ui is calculated

as:

degree(ui) =

N∑

j=1,i �=j

eij , (2)

where eij equals to 1 if an edge exists between ui and uj

in a contact graph, and otherwise equals to 0. We denote

by ranki,j(uk) the rank of mobile device uk assigned for

opportunistic communication in jth rank assignment cycle

(denoted as cranki,j ) in the ith hello collection cycle (denoted

as chelloi ). Then, the rank that will be used during jth rank

1We also investigated the aggregation performance of closeness and be-
tweenness centralities, and we could not find a significant difference compared
to degree centrality in our experiments.

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Number of mobile devices 225
Simulation time 5000 s
Communication range 50 m
Area size 1.5 km × 1.5 km
Mobility model Random Waypoint

or Random Walk
Movement speed [0.5, 1.5] m/s
Pause duration in Random Waypoint [60, 300] s
Movement duration until next change of
movement direction in Random Walk

60 s

Sensing period 1 s
Hello period 10 s
Cell width 250 m
Timeslot length 100 s
Length of hello collection cycle 5000 s
Length of rank assignment cycle 200 s

assignment cycle in the i+1th hello collection cycle at mobile

device uk is calculated as follows:

ranki+1,j(uk) = degree(uk), (3)

where degree(uk) is calculated on the contact graph in cranki,j .

Finally, the mobile devices are informed of their ranks to

be used in the each jth rank assignment cycle in the i + 1th

hello collection cycle, before the i+1th hello collection cycle

starts.

As described above, in contact history-based rank assign-

ment, a rank is assigned for each rank assignment cycle, and

the rank of a mobile device is dynamically changed during one

hello collection cycle. The rationale behind this is that the use

of a fixed value as the rank during one hello collection cycle

is not appropriate, because the mobility pattern of a mobile

device varies with time of day (e.g., morning, afternoon,

night, etc.). We see this is effective for improving aggregation

performance later in Section IV.

IV. EXPERIMENTAL EVALUATION

We conduct simulations to evaluate the aggregation per-

formance of the rank assignment methods. In the experi-

ments, 225 mobile devices are deployed within a 1.5 km

× 1.5 km area, where the initial position of each mobile

device is determined randomly, as shown in Fig. 6. Each

mobile device moves according to Random Waypoint model

or Random Walk model [13], with a speed randomly selected

from [0.5, 1.5] m/s. The sensing period Tsen is set to one

second, where one sensory data is generated at each mobile

device every Tsen. The width of a cell and the length of

a timeslot are set to 250 m and 100 s, respectively. Each

mobile device sends a hello packet with a period (Thel) of

10 s. The communication range between mobile devices is set

to 50 m. The simulation settings are shown in Table I. For

each experiment, the simulation is executed for 20 times with

different random seeds and the results are averaged over the

20 runs.
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In the experiments, to measure aggregation performance,

we assume that the amount of data of a single sensory data

is regarded as 1. We also assume that the amount of data of

an aggregated data generated from multiple sensory data has

the same amount of data as a single sensory data. Thus, by

aggregating n(∈ N ) sensory data, the amount of data of the

aggregated data is regarded to be 1. Similar to a measure used

in the area of data compression [14], we introduce aggregation
ratio, which measures aggregation performance, as follows:

aggregation ratio =
amount of data before aggregation

amount of data after aggregation
. (4)

A. Aggregation performance

We first examine aggregation performance of various rank

assignment methods. In this experiment, we compared the

following methods:

(a) Inner aggregation only. A mobile device is forbidden to

communicate with other devices, and performs aggrega-

tion only on sensory data held in own storage.

(b) ID-based ranking. Data movement is performed based

on the procedure in Section III-A. Before starting a

simulation, each mobile devices is assigned randomly

selected unique identifier in {1, . . . , N}, which is fixed

throughout the simulation.

(c) Contact history-based ranking. Data movement is per-

formed based on the procedure in Section III-A. In the

experiment, at first, according to the procedure in Section

III-B, a contact history is recorded at each mobile device

during a 5000 seconds simulation, and the ranks of

mobile devices in 5000 seconds are calculated. Then, by

setting the same random seed for the mobility model,

another 5000 seconds simulation with the same mobility

is executed while data movement is performed based

on the calculated ranks. To investigate the effectiveness

of dynamic rank assignment per each rank assignment

cycle presented in Section III-B, we compared two con-

tact history-based ranking methods: CH-fixed and CH-
dynamic, where one fixed rank is calculated for each

Fig. 7. Aggregation ratio.

Fig. 8. Aggregation ratio vs. length of rank assignment cycle.

mobile device from a 5000 seconds simulation in CH-

fixed, while a sequence of ranks, each of which is

assigned during one rank assignment cycle, is calculated

for each mobile device in CH-dynamic.

Fig. 7 shows the aggregation performance of each method.

In CH-dynamic, the length of a rank assignment cycle is set

to 200 seconds. In the experiment, Random Waypoint is used

as the mobility model for the all mobile devices. From Fig. 7,

we find that the aggregation ratios of ID-based, CH-fixed, and

CH-dynamic increase with the time elapsed. This suggests that

we can expect improved aggregation performance by deferring

uploading of sensory data, by setting a larger value to the

uploading period. We also find that the contact history-based

ranking methods achieve higher aggregation ratio than ID-

based ranking. Besides, the performance improvement in CH-

dynamic is more obvious compared to CH-fixed.

B. Impact of length of rank assignment cycle

Next, we investigate the impact of the length of a rank as-

signment cycle on aggregation performance. In the experiment,

we let all mobile devices use Random Waypoint, and measure

aggregation ratio of CH-dynamic with different lengths as a

rank assignment cycle.

The results are shown in Fig. 8. Each aggregation ratio in

the figure is measured at the simulation time of 5000. From



Fig. 9. Aggregation ratio vs. mobility model.

Fig. 10. Aggregation ratio vs. hello period.

the figure, we can see that aggregation ratio changes with

different lengths of a rank assignment cycle, and achieves the

highest aggregation ratio when the length is 200 seconds. This

results suggest that by appropriately setting the length of a rank

assignment cycle, we can improve aggregation performance.

However, it is not trivial to find the appropriate setting, since

it depends on the mobility pattern of mobile devices.

C. Impact of mobility model

Next, we investigate the impact of the mobility of mobile

devices on aggregation performance. In the experiment, αN
mobile devices move using Random Waypoint, while the

remaining devices move using Random Walk, where N = 225
and α is varied from 0.0 to 1.0.

The results are shown in Fig. 9. Each aggregation ratio

in the figure is measured at the simulation time of 5000.

From the figure, we can see that contact history-based rank

assignment methods can improve aggregation performance

in various mobility settings compared to ID-based ranking.

We also see that CH-dynamic achieves significantly higher

aggregation ratio than the other methods.

D. Impact of hello period

Finally, we investigate the impact of hello period on ag-

gregation performance. In the experiment, we let all mobile

devices use Random Waypoint. Hello period is varied from

10 to 50 seconds, while measuring aggregation ratio of each

method.

The results are shown in Fig. 10. Each aggregation ratio

in the figure is measured at the simulation time of 5000.

From the figure, we can see that aggregation ratio gradually

decreases with the increase of hello period in ID-based ranking

and contact history-based ranking, because the opportunity of

communication between devices is decreased. We also find

that decreasing rate in CH-dynamic is larger than the other

methods, which suggests that CH-dynamic can effectively

exploit contact opportunity compared to the other methods.

V. RELATED WORK

A. Wireless sensor networks

Various techniques that efficiently forward sensory data to

the sink nodes in the traditional wireless sensor networks

(WSNs) are proposed in the literature [15]. In WSNs, since the

nodes are powered by batteries, it is critical to reduce energy

consumption to extend network lifetime. Since the amount of

energy consumed by communication between nearby sensor

nodes is relatively high, data aggregation is one of the effective

ways for reducing communication overhead. In [16], [17],

[18], data forwarding protocols are proposed, which construct

spanning trees over WSNs and forward sensory data from the

leaf nodes to the root (sink) nodes, while applying aggregation

operators (e.g., maximum, average, etc.) to the sensory data.

On the other hand, in [19], [20], [21], the authors used

entropy encoding such as Huffman coding for reducing the

amount of sensory data. In these methods, although the sensory

data can be compressed without loss of information, the degree

of reduction in data size is relatively small.

Since data forwarding protocols for WSNs described above

do not consider mobility of nodes, it is difficult to effectively

apply those protocols to crowdsensing systems.

B. Crowdsensing systems

In the literature, various crowdsensing systems or par-

ticipatory sensing systems, which exploit widely scattered

mobile devices for sensing applications such as environmental

monitoring, are proposed [2], [3], [22], [23], [24]. In these

systems, although there is a possibility that a huge amount

of data is uploaded through cellular networks or Wi-Fi, a

general framework for reducing the traffic volume have not

been explored enough.

On the other hand, in [25], [26], crowdsensing systems that

exploit communications among mobile devices are proposed,

aiming to preserve user privacy (e.g., GPS coordinates) by

anonymizing sensory data. In these systems, when mobile

devices meet each other, data aggregation or data exchange is

performed to anonymize sensory data, while preserving data

quality as high as possible.

In [27], the authors present COUPON, which is a crowd-

sensing system utilizing opportunistic communication among

mobile devices. Similar to our approach, by performing data

aggregation (or fusion) on mobile devices, the amount of



sensory data is reduced. In COUPON, similar to the traditional

WSNs consisting of static sensor nodes, there are special

mobile devices called sink, which collect sensory data from

the other mobile devices and upload sensory data to the server

via cellular networks. In this setting, the authors propose

data forwarding protocols that are based on Binary Spray-

and-Wait [28], which is one of data forwarding protocols for

Delay Tolerant Networks (DTNs), and are extended to support

data fusion, aiming to reduce the amount of sensory data,

which result in low delay and low energy consumption in data

forwarding.

On the other hand, our target environment is different from

[27], because we suppose that any mobile device can directly

upload sensory data to the server periodically through cellular

networks or Wi-Fi, where there are no special sink devices in

the network. In addition, the purpose of data aggregation is

traffic reduction for cellular networks or Wi-Fi, and efficiency

in data forwarding among mobile devices is not intended in our

system design. Thus, data forwarding protocols such as Spray-

and-Wait are not effective in our target environment, because

the protocols produce multiple copies of sensory data in the

network, resulting in inefficiency in reducing traffic volume in

uploading.

VI. CONCLUSION

In this paper, we proposed rank assignment methods for

effective data aggregation to achieve reduction in traffic vol-

ume incurred by uploading of sensory data in crowdsensing

systems. In the proposed method, ranks, which are extracted by

analyzing contact history among mobile devices, are assigned

to the mobile devices so that aggregation performance is

improved. Through simulation studies, we found that the

contact history-based rank assignment methods are able to

improve aggregation performance, especially when a sequence

of ranks, each of which is used in one rank assignment cycle,

is used in each mobile device.

In the future, we are interested in extending data aggregation

scheme to also reduce the overhead incurred by device to

device communication. We will also explore the method to find

appropriate length of rank assignment cycle automatically.
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