
Network Simulation Architecture for Smartspace

Morihiko Tamai, Naoki Shibata†, Keiichi Yasumoto and Minoru Ito

Graduate School of Information Science, Nara Institute of Science and Technology,
Ikoma, Nara 630-0192, Japan e-mail: {morihi-t,yasumoto,ito}@is.naist.jp
† Department of Information Processing and Management, Shiga University,

Hikone, Shiga 522-8522, Japan e-mail: shibata@biwako.shiga-u.ac.jp

Abstract. In this paper, we propose a network simulator for smartspace.
Our simulator provides the following functions. (1) Realistic simulation
of wireless communication; (2) Software compatibility for allowing code
for real device to run on the simulator without modifying it; (3) Simulat-
ing network consisting of virtual and real devices. To realize the above
(1), the simulator simulates radio propagation taking into account the
influence of obstacles on a smartspace. For (2), the simulator provides
APIs for simulation compatible with APIs for real devices. For (3), the
simulator bridges communication between virtual and real devices using
NAT. In this paper, we describe the above functions and results of a
performance evaluation.

1 Introduction

Testing applications which run on smartspace environment is difficult and ex-
pensive, since test examiners have to install many appliances and sensors in a
testbed, and have participants perform a huge set of actions on it. Testing these
applications on a simulator is one of the promising solutions to this problem.
The following functions are desired for smartspace simulators. (1) Arrangement
of virtual devices and visualization of device states in a 3D space; (2) Simula-
tion of wireless communication taking into account influences of obstacles such
as walls and furniture; (3) Simulation of changes in physical quantities such
as room temperature changed by air conditioning; (4) Mechanisms to execute
software for real devices as virtual devices without large modifications. Users of
simulator would sometimes want to test operation of some of the devices through
human perception. For such a purpose, we need (5) mechanisms to allow virtual
and real devices communicate with each other. In order to automate some part
of testing applications, we need (6) systematic generation of test sequences.

To realize the functions (1) to (6) mentioned above, we have designed and
implemented a smartspace simulator called UbiREAL[1]. The functionalities of
UbiREAL about (1), (3) and (6) are described in [1]. In this paper, we focus
on the functionalities of (2), (4), and (5). Many of existing studies use ns-2 or
QualNet as network simulator for smartspace. These simulators are capable of
reproducing wireless and wired communication between devices. However, the
functions (3) to (6) are not considered.

The following Section 2 describes an overview of UbiREAL. Section 3 presents
the functions of our network simulator. Section 4 evaluates the performance of
the proposed simulator, and Section 5 concludes the paper.



Network
Simulator

Simulator
for Physical 
Quantities

Smartspace 
Designer and

Visualizer

Application
Program 1.

.
.

UbiREAL

Functionality to
Execute Devices

Application
Program n

Systematic Tester

Specification of
Application

Fig. 1. Modular structure of UbiREAL

2 Overview of UbiREAL
The modular structure of UbiREAL is shown in Fig. 1. In order to make users
easily construct a virtual smartspace, UbiREAL provides a graphical tool (called
smartspace designer) for designing smartspace with which users can intuitively
specify the locus of room arrangement in the smartspace, types and positions
of devices, and behavior of virtual inhabitants. In order to simulate behavior of
devices which give/receive influence to/from physical quantities such as temper-
ature or brightness, UbiREAL provides functions to simulate changes of these
physical quantities in consequence of operations of devices like air-conditioner.
Testing ubiquitous applications is hard since they have to be tested under a
huge number of arrangement patterns of devices, initial values of physical quan-
tities and behavior of inhabitants. UbiREAL provides systematic testing func-
tion which generates various test patterns automatically (see [1] for details).
Communications between devices are simulated by the network simulator.

3 Architecture of Network Simulation
UbiREAL network simulator simulates protocol stacks from the physical layer to
the presentation layer. In the physical and MAC layers, both wired (IEEE802.3)
and wireless (IEEE802.11, ZigBee, and Bluetooth) protocols are simulated. As
for the network layer, it supports AODV to simulate wireless ad-hoc networks.
As for the transport layer, it supports TCP and UDP.

A physical network topology to be simulated can be specified using the
smartspace designer (see Fig. 1). Configurations of virtual switching hubs and
wireless access points can be also specified by the designer. Virtual devices can be
selected from a pulldown menu, and placed by drag-and-drop. To specify a wired
network topology, Ethernet cables are specified by drawing lines between virtual
devices. Network configurations of each device such as IP and MAC addresses,
and ESSID of wireless LAN network can be also specified using the designer.

The network simulator provides the following functions: (1) Realistic sim-
ulation of wireless communication As for the simulation of indoor wireless
communications, free space radio propagation model which does not take ob-
stacles into account is insufficient in terms of accuracy. The proposed simulator
implements radio propagation models more suited to indoor simulation. (2)
Software compatibility The simulator provides source level software com-
patibility which allows code for real device to run on the simulator without large
modification. (3) Bridging communications between real and virtual
devices To simulate smartspace, appliances which change operations based
on physical quantities such as sound and temperature have to be simulated. It



would be also useful to test operations of some appliances by human perception
using real devices. For these purposes, the proposed simulator has the function
to bridge communications between virtual and real devices.

In the following subsections, we explain main functions of the proposed sim-
ulator.
3.1 Simulation of Wireless Communication

Radio propagation models are used to reproduce the reachability of wireless
packets between devices. The supported models include free space model, line-
of-sight model, and ray-tracing model[2]. In free space model, the received signal
power Pr(d) at the distance d from the transmitter is represented by the following
equation: Pr(d) = Ptλ

2/(4π)2d2. Here, Pt and λ are the transmitted signal
power and the wavelength, respectively. In the free space model, the obstacles in
the smartspace are not considered. In the line-of-sight model, when there is no
obstacles on the line-of-sight between the transmitter and the receiver, the same
propagation model as free space model is used. Otherwise, all communications
are blocked. In ray-tracing model, radio wave from transmitter is represented as
multiple rays, and the rays which reach to a receiver directly and indirectly by
reflection against walls/floor are traced. The received signal power at receiver
is represented as the sum of the signal power of those rays. The parameters
required by the propagation model are given by the configuration file.

If there is no device which moves around the smartspace, radio propagation is
calculated beforehand at the start-up time of the simulator, and the simulation
with line-of-sight and ray-tracing models can run as fast as that with free space
model. If there are some movable devices, radio propagation is calculated period-
ically during simulation. The period should be determined considering tradeoff
between calculation overhead and simulation accuracy.
3.2 Source Code Compatibility

UPnP is becoming a de facto standard for cooperating appliances and other
devices for ubiquitous applications. Our simulator enables application programs
developed using UPnP library (such as Libupnp[3] and CyberLink for Java[4])
to run on the simulator without large modification.

In order to keep software compatibility between application programs which
run on a real device and on the simulator, the simulator provides a library which
has the same APIs as the communication library used in the UPnP library. Ordi-
nary BSD socket library and java.net package can be used as the communication
libraries. Application code is linked with the simulator’s library (called socket
stub) at compile-time or run-time. A socket stub is located between an appli-
cation program and the network simulator, and it forwards method calls (e.g.,
bind, connect, etc.) of the BSD socket (or java.net) library from the application
program to the network simulator. The forwarded calls are transmitted through
TCP connections between socket stub and the simulator. When a method name
and its arguments are received by a socket stub, the simulator adds an event
corresponding to the method into the event queue. Each event in the queue is
processed at a predetermined time. As a result of event processing, when a re-
turn value to the caller arises, the data is passed to the application program
through the socket stub.



3.3 Communication between Virtual Device and Real Device
To realize communication between virtual devices and real devices, the net-

work simulator executes network address translation (NAT) process. When a
packet transmitted from a virtual device is transmitted towards a real device,
the NAT process rewrites the source address of the packet to the address of the
host running the simulator (called host A). Similarly, the source port number
will be rewritten to one of the unused port number of the host A. When a packet
is transmitted from a real device to a virtual device, the packet is rewritten sim-
ilarly. In UPnP, since a network address and a port number are embedded in
SSDP and SOAP messages, the NAT process also rewrites them.

4 Performance
In this section, we describe the experimental results of performance evaluation.
In the experiment, we investigated whether the simulator can carry out the
simulations of communications between devices in practical time.

The setup of the experiment is as follows. A temperature sensor and an air-
conditioner are installed in a virtual smartspace. The air-conditioner subscribes
the event of changes in sensor’s value using UPnP protocol. The sensor updates
its value every second, and the air-conditioner acquires the value of temperature
sensor every second. A response time is defined as the period from the time when
the sensor updates its value, to the time when the air-conditioner receives the
value. We increased the number of pairs of sensor and air-conditioner from 1 to
30, and observed response time. In the experiment, we assumed all devices are
connected to a network via an Ethernet hub, and devices communicate with each
other by standard protocols in UPnP framework. In the experiment, the network
simulator only emulated protocol layers above session layer, which includes the
set of UPnP protocols. Response times were measured after all air-conditioners
finish event subscription. The machine used for the experiment is as follows:
CPU: AMD Athlon64 3400+, memory: 1GB, OS: Linux 2.6.8, Java: J2SE 5.0.

From the experiment, we confirmed that the average response time is 5 ms
when the number of pairs of a sensor and an air-conditioner is 1, and that the
average response time is 8ms or less even if the number of pairs is 30. Since
each device just acquires a value approximately once every second, the proposed
simulator performed the simulation with sufficient speed.

5 Conclusion
In this paper, we described the functions of proposed network simulator and
results of its performance.

References

1. H. Nishikawa, S. Yamamoto, M. Tamai, K. Nishigaki, T. Kitani, N. Shibata, K.
Yasumoto, and M. Ito, UbiREAL: Realistic Smartspace Simulator for Systematic
Testing, to appear in the 8th Int’l Conf. on Ubiquitous Computing (UbiComp2006),
2006.

2. S. Fortune, Algorithms for prediction of indoor radio propagation, Technical Re-
port, Bell Laboratories, 1996.

3. libupnp, http://upnp.sourceforge.net/.
4. CyberLink for Java, http://www.cybergarage.org/net/upnp/java/index.html.


