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ABSTRACT
In this paper, we propose SakuraSensor, a participatory sens-
ing system which automatically extracts scenic routes infor-
mation from videos recorded by car-mounted smart-phones
and shares the information among users in quasi-realtime. As
scenic routes information, we target flowering cherries along
roads since the best period of flowering cherries is rather short
and uncertain from year to year and from place to place. To
realize SakuraSensor, we face two technical challenges: (1)
how to accurately detect flowering cherries and its degree,
and (2) how to efficiently find good places of flowering cher-
ries (PoIs) using the participatory sensing technique. For the
first challenge, we develop an image analysis method for de-
tecting image pixels that belong to flowering cherries. To ex-
clude artificial objects with similar color to flowering cher-
ries, we also employ fractal dimension analysis to filter out
unnecessary image areas. For the second challenge, we pro-
pose a method called k-stage sensing. In this method, the
interval for sensing (taking a still image and applying the im-
age analysis) by each car is dynamically shortened so that the
roads near the already found PoIs are more densely sensed.
We implemented SakuraSensor consisting of client-side soft-
ware for iOS devices and server-side software for a cloud
server and conducted experiments to travel cherry-lined roads
and record videos by several cars. As a result, we confirmed
that our method can identify flowering cherries at about 74
% precision and 84 % recall. We also confirmed that our k-
stage sensing method could achieve the comparable PoI de-
tection rate with half sensing times compared to a conven-
tional method.
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INTRODUCTION
Car navigation and routes recommendation services play an
important role for providing drivers with comfortable and ef-
ficient driving. In addition to ordinary services that only con-
sider traveling time or fuel efficiency of routes, scenic routes
recommendation services have begun to be provided, such as
scenicbyways.info [1], NAVITIME [2] or Honda’s internavi
[3] in recent years.

In scenic routes recommendation services, the user should
be able to get enough information about the recommended
routes so that he/she can easily understand what kind of (and
how beautiful) scenery will be able to view when traveling
these routes. Regarding this point, in the existing services,
only the information including texts and images are provided
for the users. Moreover these information are available only
for the pre-determined spots among the limited number of
scenic routes. These limitations are caused by the fact that
the information are edited manually by the service provider,
and the cost, especially man-power resource will be signifi-
cantly increased to improve the service quality. For this rea-
son, in the existing services, the number of pre-determined
spots is relatively small and information update frequency
on the spots tends to be low. However, since the view of
the scenery along a route possibly varies depending on time,
weather, season, traveling direction and so on, it is desirable
that the scenery information is updated frequently. Moreover,
the scenery information that consist of texts and images are
not sufficient for the users to assess how good each route is,
because it is difficult to intuitively grasp what kind of scenery
will be able to view in advance from out-of-date still images
or texts.

To address these problems, we can leverage a participatory
sensing technique [4] to collect information about scenic
routes from users’ car-mounted smartphones and share the
collected information among the users. Here, each smart-
phone mounted at a car continuously records the view from
the windshield as a sequence of videos. To detect good
scenery, image analysis for the recorded videos is performed



locally in the smartphone to quantify scenery goodness, i.e.,
how beautiful scenery is recorded in the videos. Then, the
quantified scenery goodness is sent to the server in the cloud.
The server finds locations with especially good scenery by
comparing among quantified values of scenery goodness of
various routes received from multiple traveling cars, and col-
lects short videos recorded at these locations.

The aforementioned system allows the service provider to au-
tomatically collect information of scenic routes with a wide
variety of conditions (different time period, weather, etc.)
over widespread locations. Based on the collected infor-
mation, a scenic routes recommendation service can be pro-
vided, where the users search the best scenic route to a spec-
ified destination and view short videos along the searched
route. By this service, the user can understand the goodness
of each scenic route more intuitively compared to the services
that provide information based only on texts and images.

Basically, scenic beauty perceived by humans while driving
depends on many factors including geographic features (e.g.,
landscape along a coast or a river, high altitude places) and
existence of specific objects (e.g., plants, flowers, famous
natural objects, famous artificial structures). Among various
kinds of scenery along roads, in this paper, we target cherry-
lined roads to be detected, since it seems relatively easy to
achieve the quantification of scenery goodness by color anal-
ysis. Moreover, since the best period of flowering cherries
is short (i.e., less than two weeks) and uncertain from year to
year and from place to place, we believe that detecting cherry-
lined roads in quasi-realtime is worth tackling.

In this paper, we propose SakuraSensor1, a participatory
sensing system which automatically identifies cherry-lined
road segments from videos recorded by car-mounted smart-
phones and shares the information as well as short videos
among users (e.g., car drivers) in quasi-realtime. To realize
SakuraSensor, we face two technical challenges: (1) how to
accurately detect flowering cherries and its degree, and (2)
(2) how to efficiently find good places of flowering cherries
(PoIs) using the participatory sensing technique.

For the first challenge, we employ two simple image analysis
techniques: histogram-based color analysis and region-based
fractal dimension analysis. For the color analysis, a color
histogram that represents the color distribution of flowering
cherries is generated in advance using various images that
contain flowering cherries. Then, multiple frames are sam-
pled from each video recorded by a car-mounted smartphone,
and for each pixel of each frame, the frequency that the pixel
belongs to flowering cherries is calculated. Next, the numeri-
cal value that quantifies how much flowering cherries are con-
tained in a frame, which is called cherry intensity hereafter,
is calculated as the mean value of the frequency in the frame.
It should be noted that flowering cherries look very different
depending on the lighting conditions (direct light, backlight,
and intermediate). To cope with this problem, we employed
a technique to use only a part of HSV color space for anal-
ysis. In addition, to avoid misdetection of objects (e.g., arti-

1Sakura means cherry in Japanese.
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Figure 1. Overall architecture of proposed participatory sensing system

ficial structures) that contain the similar colors in flowering
cherries, SakuraSensor divides each frame to multiple image
regions and applies to each region fractal dimension analysis
[5] to investigate if the region has complex edge patterns or
not. Histogram-based analysis is applied to regions only with
complex edge patterns which commonly appear in the regions
of leaves and trees.

For the second challenge, aiming to reduce the resource (e.g.,
battery, computation power, storage, 4G/LTE communica-
tion) consumed by each participant, we propose a method
called k-stage sensing where k is the number of stages. In
the proposed method, first each smartphone mounted at a car
senses (i.e., takes a still image and applies the image analy-
sis) at regular intervals with a long distance. When flowering
cherries are detected in the image, the place is registered as
a PoI to a cloud server, and other cars passing near the PoIs
sense at shorter distance intervals. The interval is narrowed
step by step until reaching k-th stage. Finally, the cloud server
identifies particularly good PoIs over a predefined threshold
and ask cars passing near those PoIs to record and upload
videos so that the videos are shared among users.

We implemented SakuraSensor consisting of client-side soft-
ware for iOS devices and server-side software for a cloud
server. The client software implements the proposed image
analysis method by using OpenCV. We conducted experi-
ments to travel cherry-lined roads and record videos by sev-
eral cars. Using the collected videos, we evaluated the accu-
racy of identifying flowering cherries by our image analysis
method. As a result, we confirmed that our method can iden-
tify flowering cherries at about 74 % precision and 84 % re-
call. We also evaluated our k-stage sensing method and con-
firmed that our method achieves the PoI detection rate com-
parable to the fixed interval sensing method with about half
times of sensing.

SAKURASENSOR: OVERALL ARCHITECTURE
The proposed participatory sensing system collects scenic
routes information from a number of car-mounted smart-
phones while they are traveling. The information to be col-



lected consist of GPS logs, cherry intensity, and short videos
recorded at locations with high cherry intensity. These infor-
mation are uploaded to a server and utilized to provide ser-
vices such as scenic routes recommendation. Fig. 1 shows the
overall architecture of the system, which consists of the ap-
plication running on a smartphone and the software running
on the server.

At the smartphone side, while a car is traveling, the smart-
phone continuously records GPS logs and videos captured by
its camera. The GPS logs are transferred to the server without
any special treatments. On the other hand, for the recorded
videos, it would be impossible to continuously transfer them
to the server due to the limitation on the communication band-
width of 3G/4G network. Even if it is possible, it still imposes
a significant load on the network and will not be acceptable.

To cope with this limitation, in the proposed system, instead
of uploading the whole video immediately after recording it,
the smartphone side software extracts short videos (e.g., 10
seconds) from recorded videos and uploads them based on
the requests by the server. More specifically, short videos are
collected in the following steps.

• First, the smartphone side software uploads GPS data to the
server (arrow (1) in Fig. 1), and receives a list of locations
where sensing is required (arrow (2) in Fig. 1), which is
created by the server based on k-stage sensing method ex-
plained in detail in later sections. Then, at the nearby loca-
tions in the list, the smartphone side software analyzes the
video stream captured by smartphone’s camera using the
image analysis method proposed in the next section and
at the same time the video stream is stored in the smart-
phone’s storage (every time interval, e.g., one minute, of
the video stream is stored as a file).

• It extracts frames from the video stream at a specific sam-
pling rate and calculates cherry intensity of the frames us-
ing an image analysis method (details are given in the next
section).

• Cherry intensity is continuously calculated and uploaded
to the server (arrow (3) in Fig. 1).

• Next, the server side software detects locations (PoI: Points
of Interest) that have especially high values of cherry inten-
sity by statistically analyzing the cherry intensity collected
from a number of cars, and sends requests for the short
videos to the smartphones that recorded videos including
the specified PoI (arrow (4) in Fig. 1). A method for ap-
propriately updating cherry intensity (overwrite, average,
discard, etc) for PoI from the information collected by mul-
tiple users is out of scope of this paper and part of future
work.

• Finally, the smartphone which received a request extracts
the short video including the PoI specified in the request
and uploads the video to the server (arrow (5) in Fig. 1).

To mitigate storage usage, the smartphone side software lim-
its the capacity of the usable storage for recorded videos, and
videos that contain frames with relatively higher values of
cherry intensity are stored preferentially within the storage

(a) Route Selec�on View (b) Route Informa�on View

Figure 2. User interface for scenic routes search service

capacity. Moreover, the videos that have been completed up-
load to the server are removed immediately.

As an example of services that use collected information of
cherry intensity, we consider a scenic routes recommendation
service here. Fig. 2 is an example of the user interface of the
service. The route selection view (Fig. 2 (a)) shows multi-
ple candidates of routes between the departure point and the
destination point, and these routes are sorted based on cherry
intensity (scenery goodness), distance, and estimated time re-
quired to travel. In Fig. 2 (a), sorting is performed based on
cherry intensity. When the user selects a route, the detailed
information are shown on the screen (Fig. 2 (b)) and the user
can check the locations of PoI and view short videos recorded
at the PoI.

To provide such a service, it is important to be able to cal-
culate cherry intensity with sufficiently high accuracy from
video streams. The next section presents the image analysis
method in details to calculate cherry intensity.

DETECTION OF FLOWERING CHERRIES
This section presents the image analysis method which takes
an image (i.e., a frame sampled from a video stream) as an
input and outputs its cherry intensity, which quantifies the
amount of flowering cherries in the image. The proposed
method mainly consists of two image analysis modules: (1)
histogram-based color analysis module to detect image pixels
that belong to flowering cherries and (2) region-based frac-
tal dimension analysis module to filter out unnecessary im-
age regions that have relatively simple edge patterns such as
buildings and roads. We chose these image analysis meth-
ods, because they are relatively lightweight and appropriate
for realtime image analysis on smartphones, which have lim-
ited computational and battery resources. The details of these
modules are described in the following subsections, respec-
tively.
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Figure 3. A tool for extracting image regions of flowering cherries
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Histogram-based color analysis for detecting flowering
cherries
The color analysis module takes an image of RGB color space
as an input and for each pixel contained in the input image,
it quantifies to what extent the pixel has a similar color that
frequently appears in the image regions of flowering cherries.
To do this, we prepare a color histogram in advance, which
represents frequency distribution of colors of pixels that actu-
ally belong to the regions of flowering cherries.

To create the histogram, we collect a number of videos that
are captured while traveling cherry-lined roads and extract
image regions that contain flowering cherries. Here, the size
of each region is 48×48 pixels, for example. Extracting im-
age regions manually from videos is a labor-intensive and
time-consuming task. To support the task, we developed a
tool that takes a video file as an input and saves as files spec-
ified regions of each frame contained in the video while dis-
playing each frame. A screenshot of the tool is shown in
Fig. 3. The tool draws grid lines onto each frame, and the
user can select each rectangle region in the grid by clicking
with the mouse. The regions selected are marked with red
color. For example, in Fig. 3, five regions are currently se-
lected. After selecting some regions, by pressing the ‘s’ key,
the selected regions are saved as separated image files. When
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Figure 5. An example of H-S histogram generated from multiple cherry
regions

using the tool, we carefully chose regions so that each re-
gion entirely contains flowering cherries and does not contain
backgrounds such as sky. Hereafter, each region collected by
the tool is called cherry region. Examples of cherry regions
collected are shown in Fig. 4.

Next, we generate a color histogram that represents the fre-
quency distribution of colors of pixels that appear in cherry
regions from a number of cherry regions collected above.
First, the color space of each cherry region is converted to
the HSV color space. Then, for each cherry region, we build
a two-dimensional color histogram (consisting of bins with
some fixed value ranges) of H (Hue) and S (Saturation) com-
ponents, in which the value stored in each bin is the number
of pixels that are within the range of the bin. For V (Value
or Brightness) component, we found that the inclusion of V
into the color histogram does not contribute to or slightly de-
grades the accuracy of cherry intensity from preliminary ex-
periments, because the value of V varies significantly depend-
ing on the lighting (direct or back) and weather conditions.
For this reason, we do not include V into the histogram. Af-
ter that, H-S histograms of all cherry regions are merged into
one H-S histogram by accumulating the frequencies (values)
of corresponding bins among all histograms. Lastly, the val-
ues in each bin are normalized by dividing with the maximum
value among the bins. Fig. 5 shows an example of the H-S
histogram built from total of 148 cherry regions. In Fig. 5,
we can see that the H and S values that appear in cherry re-
gions are biased toward the certain part within a range which
is surrounded by red lines. Hereafter, when the value of H is
h and S is s, the normalized value of the bin that corresponds
to the vector (h, s) is denoted by F (h, s).

Finally, cherry intensity of the input image is calculated us-
ing the H-S histogram obtained above. For this, we use the
backprojection [6] method, which is a well-known method for
object recognition in images. For each pixel Ii,j contained in
the input image, where i and j are the x and y coordinates
of the pixel, respectively, we denote the values of H and S
by H(Ii,j) and S(Ii,j), respectively. Then, the cherry inten-

sity of the pixel, denoted byDpix(Ii,j), is calculated by the
following equation:

Dpix(Ii,j) = F (H(Ii,j), S(Ii,j)). (1)



Figure 6. An input image

Figure 7. A resulting grayscale image of the backprojection method

Here, the higher the cherry intensity of a pixel is, the higher
the probability that the pixel actually belongs to the flowering
cherries. Finally, we calculate the cherry intensity of an input
image I denoted by Dimg(I) as the mean value of the cherry
intensity of all pixels in I by the following equation:

Dimg(I) =

∑
i

∑
j D

pix(Ii,j)

N(I)
, (2)

where N(I) is the number of pixels in I .

Fig. 7 shows the grayscale image where each pixel is repre-
sented by thickness corresponding to cherry intensity value,
which is obtained by applying the backprojection method to
the input image shown in Fig. 6. In this figure, we clearly
see that the pixels that belong to the flowering cherries have
relatively high values.

Region-based fractal dimension analysis
The histogram-based color analysis described above is not
enough to calculate cherry intensity accurately, because the
cherry intensity can be high incorrectly when there exist ob-
jects (e.g., structures, signboard) that contain similar colors
to flowering cherries. In this subsection, we describe a fractal
dimension analysis method to identify cherry regions, which
have relatively complex edge patterns.

Self-similarity is the property that a similar pattern to the orig-
inal pattern will appear in a part of the original pattern when
magnifying. An object that exhibits self-similarity is called

Figure 8. A result of the fractal dimension analysis

fractal, and it is known that fractals are easily found in na-
ture such as coastlines [5]. One of the indices that charac-
terizes fractal patterns is the fractal dimension, and it is used
to quantify the complexity of the patterns in images and is
applied to analyzing medical images obtained with various
imaging modalities such as ultrasound and computed tomog-
raphy (CT) [7].

In the proposed method, fractal dimension analysis is used as
follows. First, an edge detection algorithm is applied to the
input image, producing the resulting binary image. Then, the
binary image is divided by a grid pattern into square blocks of
the same size, and the fractal dimension is calculated for each
square region. Lastly, the color analysis explained in the pre-
vious sub-section is applied to only the regions whose fractal
dimension is higher than a specific threshold (called fractal
dimension threshold). Among several methods for calculat-
ing fractal dimension, we employ the box counting method
[5] because it is easy to implement.

Fig. 8 shows the fractal dimension of each square region in
the input image shown in Fig. 6. In the proposed method,
Canny’s algorithm [8] is used for edge detection. The size
of the square is empirically set to 80×80 pixels. The figure
suggests that the square regions including flowering cherries
have complex edge patterns and they have relatively higher
values of fractal dimension than the other regions.

Computation of cherry intensity of a video
In this subsection, given a video m, we describe how to calcu-
late the cherry intensity of m, which is denoted by Dmov(m).
First, the frames are extracted from m with a specific sam-
pling rate. Here, the set of frames extracted is denoted by
F (m). Then, fractal dimension analysis is applied to each
frame, and if there are some square regions whose values
of fractal dimension are higher than the fractal dimension
threshold, the cherry intensity of the pixels within the square
regions are calculated by Equation (1), otherwise the cherry
intensity of the frame is 0. Finally, Dmov(m) is calculated
as the mean value of the cherry intensity of all frames and
calculated by the following equation:



Dmov(m) =

∑
I∈F (m) D

img(I)

|F (m)| . (3)

The image analysis methods proposed in this section can be
directly applied to the similar types of scenery like autumn
leaves in fall and fresh green leaves in spring by creating a
color-histogram dedicated to the specific scenery type.

IMPLEMENTATION
In this section, we describe the details of implementation of
our participatory sensing system.

Overview of implementations
We have implemented the smartphone side software for iOS
(version 8.0.2) and the server side software for Linux. The
server side software has been implemented in JavaScript us-
ing Node.js2. We use WebSocket [9] and its library ws3

for communication to the client side software. The client
side software uses SocketRocket4 which is a library for Web-
Socket for communication to the server side software. It also
incorporates the SakuraSensor module which is implemented
in Objective-C using OpenCV for iOS version 3.0.0-alpha.

Performance of short video uploads
The proposed participatory sensing system aims to achieve
quasi-realtime (e.g., several minutes delay is permitted) shar-
ing of cherry intensity and short videos collected while users
are traveling by car.

We conducted experiments of uploading 10-second short
videos from smartphones in traveling cars to the server by
using the client and server side implementations, and mea-
sured upload time through 3G and 4G networks. In the ex-
periment, two cars v1 and v2 equipped with iPhone 5s run-
ning the implemented software traveled in Nara prefecture,
and while traveling, v1 captured and uploaded 20 ten-second
videos with 640×480 pixels resolution through 3G network,
and v2 captured and uploaded 13 ten-second videos with
1280×720 pixels resolution through 4G (LTE) network. NTT
DOCOMO’s SIM cards are used for 3G and 4G communica-
tions. All uploads were done in different places within the
same day. The sizes of videos with 640×480 and 1280×720
pixels are about 4.3MB and 14.0MB on average, respectively.

As a result, average upload time and throughput by v1 (using
3G) were 112.8 seconds and 318.6Kbps, respectively, while
those by v2 (using 4G) were 41.9 seconds and 3.8Mbps, re-
spectively. This time, the throughput using 4G (LTE) network
was about 10 times higher than that using 3G. Nevertheless,
upload time through both 3G and 4G is within tens to hun-
dreds seconds, and we believe this upload time will not be a
problem for practical use.

Performance of image analysis

2https://nodejs.org/
3http://einaros.github.io/ws/
4https://github.com/square/SocketRocket

By using the software of the smartphone side implementa-
tion installed on iPhone 5s, we measured the performance of
SakuraSensor when applying it to various 1-second videos
with 640×480 resolution.

As a result, our implementation of SakuraSensor processed
these videos at 11.3 frames per second (fps) on average. Since
cherry index does not so quickly change over frames in gen-
eral, calculating cherry index, for example, every 5 frames
is considered to be sufficient. In this case, the current im-
plementation of SakuraSensor can process a video stream
(640×480 pixels, 30 fps) in realtime. We believe this result
is good enough for practical use.

K-STAGE SENSING METHOD
It is infeasible for a car to sense a long distance alone, because
the calculation of cherry intensity consumes much compu-
tational resources and requires a lot of communication cost
for uploading recorded videos. To mitigate the load of a
smartphone, in this section, we propose the k-stage sensing
method. In this method, when a car performs sensing, the
areas of the nearby PoIs, which are already detected by the
preceding cars, are sensed intensively.

In the k-stage sensing method, sensing granularity is con-
trolled by two parameters, i.e., sensing interval and sensing
radius. Sensing interval (in meters) represents how often a
car performs sensing, and sensing is performed every time a
car runs for a distance specified by the sensing interval. The
set of available values of the sensing interval is denoted by
I = {int1, ..., intk}, where int1 > ... > intk. Also, sens-
ing is performed at the specific locations within the sensing
radius (in meters) of a circle centered at the existing PoI. The
set of the available values of the sensing radius is denoted by
R = {rad1, ..., radk}, where rad1 > ... > radk.

In the following, given a car c, we describe how the sens-
ing interval int(c) and the sensing radius rad(c) of the car
are determined. First, when c performs sensing, c uploads
the information of the current location (GPS data) to the
server. Then, the server determines the road that is cur-
rently travelled by c, and searches the set of PoIs, denoted
by PoI(c) = {p1, p2, ..., pm}, on the same road, which are
detected by the preceding cars within d days past. Here, d
is a system parameter to be specified in advance by the ser-
vice provider depending on the type of scenery (e.g., 7 days
in the case of flowing cherries). If PoI(c) = ∅, then the sens-
ing is performed at the largest granularity, i.e., int(c) = int1
and rad(c) = rad1. Otherwise, the sensing granularity is
increased compared with the preceding cars as follows. Let
c′ be the car that detected a PoI in PoI(c) and performed
sensing most recently among the preceding cars, and inti
and radi be the sensing interval and radius of c′, respec-
tively. Then, we set int(c) and rad(c) to int(c) = inti+1

and rad(c) = radi+1, respectively. Eventually, when int(c′)
and rad(c′) reach to intk and radk, respectively, then the
sensing granularity will be reset: i.e., int(c) = int1 and
rad(c) = rad1.

Using the sensing granularity determined above, sensing of
each car is performed as follows, as illustrated in Fig. 9. In
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the case when int(c′) = int1 for a preceding car c′, sensing is
performed at each location of the car every time after the car
c′ traveled int1 meters (upside in Fig. 9). In this case, rad1 is
not used. After that, when a following car c enters the same
road as c′, it sets its sensing interval and radius to int2 and
rad2, respectively, because a PoI in PoI(c) is found on the
road. Then, c performs sensing at each location every time
after c traveled int2 meters while c is in the circle centered at
the PoI with radius rad2 (downside in Fig. 9).

EVALUATION
In this section, we evaluate SakuraSensor in terms of accu-
racy of flowering cherry detection based on cherry intensity
and effectiveness of k-stage sensing.

Accuracy of Cherry Intensity
The accuracy of cherry intensity is evaluated through the fol-
lowing steps: (1) we recorded a bunch of videos denoted by S
by car-mounted smartphone, where flowering cherries show
up in some of S; (2) the set of videos denoted by C with
flowering cherries were manually selected from S as ground
truth data; (3) we classified S into the videos with flowering
cherries denoted by C ′ and those without flowering cherries
(S − C ′) by SakuraSensor; and (4) we compared C and C ′.

Table 1. List of scenes
scene name date vehicle area length (min.)

S1 Mar. 31 v1 Aichi Pref. 17
S2 Apr. 5 v2 Nara Pref. 12
S3 Apr. 10 v2 Nara Pref. 66
S4 Apr. 10 v3 Nara Pref. 261
S5 Apr. 10 v4 Nara Pref. 186
S6 Apr. 11 v1 Gifu Pref. 72
S7 Apr. 12 v2 Osaka Pref. 137
S8 Apr. 18 v1 Aichi Pref. 89

The set of videos S used for the experiment was recorded
by multiple cars while driving along cherry-lined roads in
March and April of 2014. There are eight combinations of
recording date and car called scenes as shown in Table 1.
For each scene, we extracted 1-second videos starting at the

Table 2. List of classes
class name criteria

C1

the ratio of cherry blossoms in the screen

is less than 5%

C2

the ratio of cherry blossoms in the screen

is at least 5% and less than 25%

C3

the ratio of cherry blossoms in the screen

is at least 25%

Table 3. Number of videos in each class by manual classification
scene name C1 C2 C3

S1 79 17 10
S2 93 10 17
S3 372 43 3
S4 1613 96 45
S5 1167 6 0
S6 261 47 72
S7 888 1 0
S8 521 10 7

Total 4994 230 154

time randomly selected. All the extracted 1-second videos
were manually classified into three classes according to cri-
teria shown in Table 2. Example videos classified to these
classes are shown in Fig. 10. The reason why we set 1 second
for each video is that it will be difficult to manually classify
long videos (more than 1 second) into the classes of Table 2
because the cherry intensity greatly changes among frames in
the same video (e.g., cherry intensity could be very high in
the first 2 seconds, but there would be almost no cherry in the
remaining 8 seconds, when we use 10 second videos). We
also considered that different persons might classify the same
video to different classes. Thus, in the experiment, two per-
sons independently classified the videos into the classes, and
each video which was classified to the same class by the two
persons was used as the ground truth data. Table 3 shows the
result of manual classification of videos in Table 1.

We mechanically classified 1-second videos into three classes
of Table 2 according to the cherry intensity computed by
SakuraSensor. To create H-S histogram required for cherry
intensity computation, we extracted images with flowering
cherries as follows. First, we randomly selected 50 videos
from videos which were classified to C2 or C3. Here, we se-
lected the videos from as different scenes as possible. Next,
in each extracted video, two to five areas showing cherry
blossoms were manually extracted (avoiding non-cherry blos-
soms areas) and stores as image files using the tool shown in
Fig. 3. Here, area size is 48×48 pixels. Finally, 148 areas
were extracted and stored as image files. We show part of
them in Fig. 4.

Then, we divided the set of videos in each class to the train-
ing set and the test set. The training set is used for learn-
ing mechanical classification of videos to each class based
on cherry intensity. More precisely, in the learning process,
cherry intensity of each video in the training set is calcu-
lated and the median value of cherry intensity values of all
the videos in the training set is computed. Let c.med denote
the median value of cherry intensity in the training set of class



Figure 10. Example videos of each class
Table 4. Confusion matrix of classification results by SakuraSensor
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c. When a video m in the test set is given, its cherry intensity
Dmov(m) is computed and m is classified to the class c′ so
that |Dmov(m)− c′.med| is the smallest.

For class C1, after shuffling items in the set of videos, the
first half and the last half were selected as the training set
and the test set, respectively. For classes C2 and C3, we
similarly divided the set of videos to the training set and the
test set, where the videos used for creating H-S histogram of
SakuraSensor are not included in the test set. To mitigate the
influence by shuffling, we conducted the above process 30
times and averaged the results.

Parameters used for the experiment are as follows. Frame
size and the frame rate of each video are 640×480 and 29.97
fps, respectively. The cherry intensity of each video is cal-
culated as the average value of the cherry intensity values of
all frames included in the video. We set the fractal dimension
threshold to 1.7 and the size of square used for calculating
fractal dimension was set to 80×80 pixels. We used OpenCV
to implement SakuraSensor and cvCanny function for de-
tecting edges in fractal dimension calculation. We set the
third and the fourth parameters of cvCanny to 100 and 200,
respectively. The parameters used in the image analysis are
empirically selected based on the preliminary experiments.

Table 4 shows the confusion matrix of classification results by
SakuraSensor. In the table, The number of row Ci and col-
umn Cj shows the number of videos which actually belong to
class Ci and are classified to class Cj (average over 30 trials).
Fig. 11(a) shows precision and recall for each class calculated
from the result in Table 4. The median values of cherry in-
tensity calculated from the training sets of three classes were
0.00033, 0.00791, and 0.03326, respectively.

Table 4 and Fig. 11(a) show that a good classification re-
sult is obtained for class C1 videos. The result suggests that
SakuraSensor can achieve low false positive rate for the roads
without flowering cherries (non-scenic routes), because the
number of videos of C1 is relatively large (4994 videos in to-
tal) in the experiment. On the other hand, for class C2 videos,
the precision is about 0.2, meaning that the result is not so
good. The main reason is that many videos included in class

Table 5. Confusion matrix when classifying to two classes

2589 22.8

12.7 64.3

Predicted class

A
ct

u
a

l 
cl

a
ss

precision = 0.74
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Figure 11. Precision and recall of classification results by SakuraSensor

C1 were classified to class C2. To classify videos with small
to medium cherry intensity, we need a more accurate classi-
fication method. For class C3 videos, the classification result
is good since the recall is more than 0.8 and the precision
is about 0.7. However, some C1 videos were classified to
class C3. We show an example of such a miss-classification
in Fig. 12. In this figure, a whity plant (which has similar
color to cherry blossoms) shows up in the green and the frac-
tal dimension of the area including the plant is high. In such
a case, miss-classification can happen.

To evaluate the effectiveness of fractal dimension analysis,
we also derived the classification result when we do not use
the filter by the fractal dimension analysis. The precision and
the recall in this case are shown in Fig. 11(b). The figure sug-
gests that the classification accuracy totally degrades and es-
pecially the accuracy for C3 is worsen to a great extent when
the fractal dimension analysis is not used because many C1

videos are classified to C3.

In the afore-mentioned evaluation, we considered the case
that intermediate class C2 exists. In actual use, however, it
would be enough to detect videos with only high cherry in-
tensity. Thus, below we consider only two classes: Cf rep-
resenting videos with low cherry intensity (little cherry blos-
soms) and Ct representing videos with high cherry intensity
(many cherry blossoms). Here, C1 and C2 belong to Cf and
C3 belongs to Ct. We show the confusion matrix in this case
in Table 5. The precision and the recall of classifying videos
to Ct are about 0.74 and about 0.84, respectively. We believe
this result is tolerable for the practical use in the early stage
deployment of the system.

Accuracy of detecting cherry-lined roads
The evaluation results in previous section were for still im-
age samples randomly picked up from different videos. Here,
we try to continuously detect cherry-lined roads while driv-
ing. We used the video recorded by the car-mounted smart-
phone while driving along cherry-lined roads in Gifu prefec-
ture, Japan, in April of 2014. This video is divided to sections



Figure 12. Example of a class C1 video classified to class C3

Table 6. Confusion matrix of classification results by SakuraSensor
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at regular intervals with 10 seconds. We evaluated the classi-
fication accuracy of all the intervals by the proposed method
by comparing with the manual classification results by hu-
man as ground truth. Here, classification of each video is
done subjectively by one person as follows: when over 50%
of frames in the video seem to be in class Ci in Table 2, the
video is classified to Ci.

We show the result in Table 6. The percentage of correctly
classified sections was 56.3%. The main reason is that many
sections included in C2 were mis-classified to C1. Then, we
investigated the results of classifying to Ct and Cf (videos in
C2 are classified to Cf ). Results are shown in Table 7. The
percentage of correctly classified sections was 75.0%.

Effectiveness of k-stage sensing
We evaluated the effectiveness of k-stage sensing in the fol-
lowing steps: (1) using the video which is recorded by car-
mounted smartphone, where flowering cherries show up; (2)
setting the sensing interval to either 100m, 200m, or 500m for
all cars (called the fixed interval sensing method), and define
the parameters I , R = {300m, 150m, 50m} for k-stage sens-
ing, where k = 3; and (3) comparing the results of sensing
times between k-stage sensing and the fixed intervals sensing.

The route used for the experiment is shown in Fig. 13. The
number of running cars and the driving speed of each car are
defined based on the data of traffic collected by MLIT (Min-
istry of Land, Infrastructure, Transport and Tourism) Japan
shown in Table 8. The sensing start point of each vehicle is
shifted randomly between 0 and 600 sec. We defined PoI dis-
covery rate as follows and used it as metric.

PoIDiscoveryRate(%) =
#DetectedPoIs

#AllPoIs
(4)

DetectedPoIs correspond to the locations with the same
cherry intensity range as class C3 that are sensed by at least
one car, and AllPoIs correspond to the locations with the

Table 7. Confusion matrix when classifying to two classes
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Figure 13. Part of Nara prefectural road 167

same cherry intensity range as C3 existing in the target area.
Figs. 14 and 15 show PoI discovery rate and the sensing times
as the number of driving cars increases. Table 9 shows PoI
discovery rate for each condition and sensing times per car.
This result shows that k-stage sensing has the similar PoI
discovery rate to the fixed intervals method with 9.47 times
smaller sensing times (about 50 %) than the fixed intervals
method.

RELATED WORK

Vehicular Sensing
There are some studies which use in-vehicle sensors or smart
phone to collect various information while driving and use
the collected information for driving support.

In [10], Eriksson et al. used accelerometer of smart phone
for sensing road surface conditions and identifying and shar-
ing damaged areas. In [11], Mohan et al. proposed a method
for recognizing road congestion from horn sound collected by
microphone of smartphone and road surface condition sensed
by accelerometer. In [12], Mathur et al. employed a dedicated
ultrasound sensor attached to side of a vehicle for recogniz-
ing whether a parking lot is occupied or not. There are some
studies which estimate road congestion by WiFi-based local-
ization and GPS logs [13, 14],

SignalGuru [15] is an in-vehicle smart phone application
which detects traffic signals through image analysis and
shares signal changing timings with other cars through WiFi
ad-hoc communication. SignalGuru also navigates a driver to
regulate driving speeds so that the car does not have to stop at
traffic lights and can save fuels. In [16], You et al. proposed a
smart phone application called CarSafe which alerts a driver
to dangerous situations such as approaching too close to the
car ahead and incautious lane changes by capturing orienta-
tion of driver’s face and gaze with in-camera and monitoring
distance to the car ahead and lane changes with back-camera.



Table 8. Traffic data which are used in simulation
Place Nara

Traffic volume（7-18 o’clock） 569 [cars]
Running speed 23.5 [km/h]

Number of cars
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Figure 14. PoI discovery rate

Route Recommendation based on Scenery
GPSView [17] automatically extracts scenic spots along roads
by detecting spots where many photos are taken from geo-
tagged photos uploaded to photo sharing services like Flickr.
GPSView also recommends scenic routes to drivers based on
the scenic spots information. GPSView improves detection
accuracy of scenic spots by picking up only photos taken by
travelers, which will be scenic photos at high probability. It
also formulates an optimization problem to find the best route
taking into account both distance and scenery of routes, and
recommends a balanced route to a driver.

In [18], Kawai et al. proposed a system which recommends
the best scenic route when a user moves between sight seeing
spots by car taking into account scenery along roads. The
proposed system identifies PoI on the web by searching a
keyword like “scenic spot,” sorts the identified PoIs in the
order of their scores which are calculated based on the degree
of good perspective obtained from 3D map data, and recom-
mends a route including high score PoIs.

Object Detection from Videos Taken While Driving
There are many studies which detect objects from videos
taken by cars while driving, for example, detecting cars mov-
ing ahead [19, 20], detecting roads [21], detecting pedestrians
[22], and detecting signs [23].

To the best of our knowledge, there is little study which
detects scenery including flowers, leaves, and trees such as
flowering cherries and red leaves from videos recorded by
in-vehicle camera while driving. Furthermore, our proposed
method is novel in the sense that it does not just detecting
objects but also provides a feasible framework for collecting
scenery information along roads as well as high-light short
videos through participatory sensing.

CONCLUSION
In this paper, we proposed SakuraSensor, a participatory
sensing system for automatically collecting and sharing in-
formation of cherry-lined roads as well as videos seen from
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Figure 15. Sensing times

Table 9. PoI discovery rate and sensing times per car
conditions sensing

count to
detect
all PoI

3-stage
sensing

per
100m

per
200m

per
500m

PoI dis-
covery
rate (%)

100 81 86 82 73

Sensing
times
(counts)

824 9.53 37.48 19.00 7.89

windshield of a car by using car-mounted smartphones. To
automatically detect not only existence of flowering cherries
but also intensity of cherry blossoms (how densely cherry
blossoms exist) from videos, we devised an image analysis
method consisting of two techniques which quantify cherry
intensity in the video by histogram-based color analysis and
region-based fractal dimension analysis. To allow partici-
pants to cooperatively find PoIs and save resource consump-
tion by each car, we also proposed k-stage sensing method
which dynamically changes sensing interval depending on the
distance to already registered PoIs. Our experiments using
videos collected while actually traveling cherry-lined roads
by several cars showed that our method can classify videos
into two classes: videos with little cherry blossoms and those
with dense cherry blossoms with precision about 0.74 and re-
call about 0.84. Also, our k-stage sensing method reduced
number of sensing times by each car to about half of the con-
ventional method while keeping the PoI discovery rate.

As part of future work, we will add a mechanism to re-
duce mis-classification of similar color plants to cherry blos-
soms by using features of cherry tree, and will conduct more
thorough experiments using more videos recorded in various
places and conditions. We also plan to extend the system to
collect and share other types of information sensed by car-
mounted smartphones such as congestion on roads and road-
side restaurants and shops.
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