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Abstract. In this paper, we propose a simulator for facilitating reliable
and inexpensive development of ubiquitous applications where each appli-
cation software controls a lot of information appliances based on the state
of external environment, user’s contexts and preferences. The proposed
simulator realistically reproduces behavior of application software on vir-
tual devices in a virtual 3D space. For this purpose, the simulator provides
functions to facilitate deployment of virtual devices in a 3D space, sim-
ulates communication among the devices from MAC level to application
level, and reproduces the change of physical quantities (e.g., tempera-
ture) caused by devices (e.g., air conditioners). Also, we keep software
portability between virtual devices and real devices. As the most promi-
nent function of the simulator, we provide a systematic and visual testing
method for testing whether a given application software satisfies specified
requirements.

1 Introduction

It is one of the most important challenges to realize Smartspace environments
which provide people useful services by making embedded devices cooperate
based on contexts. In order to realize Smartspace, we need ubiquitous appli-
cation softwares which control many information appliances based on contexts
and user preferences. We also need ubiquitous sensor networks as infrastructure
for these applications. There are many studies on realizing middleware for facil-
itating development of ubiquitous applications and testbeds for testing if those
applications work expectedly [1–4].

Since applications running on Smartspace have influence on convenience and
even safety of our daily life, those applications must be developed carefully so that
they run expectedly and safely. However, it is difficult and expensive to test them
thoroughly in real world environments, since test examiners have to assemble
testbeds using various types of sensors and information appliances and generate
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a quite large number of contexts for tests where each context consists of user
locations/behavior, time, and so on. Also, there are so many possible deployment
patterns of sensors and appliances. In addition, users of Smartspace may want to
know how devices work based on typical contexts and their preferences in advance
and change deployment of devices, control policies (rules) and/or preferences to
find the best configurations to fit their life styles. However, this kind of trial and
error burdens users too much if it is conducted in real world environments.

For evaluating protocols in large scale wired and/or wireless networks, net-
work simulators such as ns-2 and QualNet are widely used. Those network simu-
lators can be used to evaluate only aspects of communication between devices of
Smartspace. So, in order to cope with the above problems, we need a simulator for
realistically simulating Smartspace environments. For this purpose, the following
criteria should be satisfied with a Smartspace simulator: (1) Support to design
Smartspace which allows test examiner to easily deploy networked devices in a
freely designed 3D virtual space; (2) Realistic context generation which generates
various contexts based on user behavior and device actions/communications in
the virtual space; (3) Graceful visualization which intuitively informs test exam-
iner of how devices work based on contexts through visual animations; (4) Soft-
ware compatibility which allows software and protocols (such as device drivers) to
run on the virtual space as well as in real world environments; and (5) Systematic
testing which systematically generates possible contexts and checks whether the
system runs expectedly.

There are several studies to realize a Smartspace simulator such as UBIWISE
[5] and TATUS [6]. These existing simulators partly achieve the above criteria
(1), (3) and (4). However, the important criteria (2) and (5) are not realized.

In this paper, we propose a Smartspace simulator called UbiREAL (Ubiquitous
Application Simulator with REAListic Environments) which provides a virtual
testbed for ubiquitous applications in a 3D space.

For the criteria (1)-(5), UbiREAL provides the following functions: (i) ar-
rangement of devices in a 3D space by GUI; (ii) simulation of wired and wireless
communication between devices (i.e., sensors and information appliances) from
MAC layer to application layer; (iii) emulation of temporal transition of physical
quantities in a space; (iv) visualization of device states by 3D animations; and (v)
systematic tests for a given application under test and deployment of devices in a
space. The above function (ii) realizes the software compatibility (criterion (4)),
and (iii) realizes the realistic context generation (criterion (2)). These functions
cooperate to achieve the systematic tests (criterion (5)).

The rest of the paper is composed as follows. Section 2 briefly describes the
related work. In Section 3, we explain overall structure of UbiREAL. In Sections
4, 5, 6 and 7, we present the details of UbiREAL, that is, device arrangement and
visualization in a virtual Smartspace, simulation of communication, simulation
of physical quantities, and systematic tests, respectively. Experimental results for
UbiREAL performance are shown in Section 8. Finally, Section 9 concludes the
paper.
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2 Related Work

There are many research efforts which aim to facilitate development of ubiqui-
tous applications and/or improve reliability of those applications. The existing
studies are largely classified to three groups treating middleware, testbeds and
simulators.

Firstly, as middleware and/or framework for efficient development of ubiqui-
tous applications, many studies such as Refs. [1, 7, 8] have been researched.

Biegel et al. have proposed middleware which controls sensors, actuators and
application components in an event-driven manner, in order to facilitate develop-
ment of mobile and context-aware applications [1]. Niemelä et al. addressed that
it is important to achieve inter-operability, adaptability and scalability among
components for agile pervasive computing, and they proposed an architecture
achieving them [7]. Roman et al. have proposed middleware called “Gaia”, which
provides various services in Smartspace [8]. In addition, Chan et al. have proposed
a J2ME-based middleware with micro-server proxy for thin clients to use services
of Gaia [9]. Messer et al. have developed middleware which integrates different CE
(Customer Edge) devices, where it allows users to only choose what they want to
do through comprehensive pseudo-English interface when using the middleware
[10]. Nishigaki et al. have proposed a language called “CADEL” which facili-
tates rule description by defining complex conditions/contexts as simple phrases
in natural language and developed a framework for context-aware applications
with information appliances which aim to allow ordinary home users to easily
configure device controls [2]. These researches for middleware mainly focus on
facilitating application development and increasing availability of various devices
and usability of systems. Thus goals of these middleware overlap with our goal.
Since these existing middleware can be applications of our UbiREAL simulator,
we can say that the middleware researches and UbiREAL research are mutually
complementary.

Secondly, there are several existing studies concerning testbeds of ubiquitous
applications [11, 12]. Consolvo et al. have evaluated advantages and drawbacks
of existing methods by experiments designing a Smartspace called Labscape [11].
Nakata et al. have noticed that a simulation to make testbeds is very hard, and
thus proposed a simulation method which virtually executes not only virtual
devices but also real devices in the simulation [12].

These researches on testbeds are important for ubiquitous applications to be
developed efficiently and improve reliability, but it would be hard and costly
to construct various configurations of devices in a real environment for tests.
For this problem, Ref. [12] adopts an approach similar to UbiREAL, that is, to
execute real devices and virtual devices cooperatively with interactions. However,
the project is in early phase, and the paper describes only rough ideas without
detailed implementation or method.

Thirdly, as studies concerning simulations of ubiquitous environments, Refs.
[5, 6, 13, 14] have been proposed. Hewlett-Packard Laboratories have proposed a
simulator called UBIWISE [5]. UBIWISE is designed for development of proto-
types and for tests of new hardware device and its software in the virtual ubiq-
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uitous computing environment. UBIWISE consists of two simulators; UbiSim,
which generates 3D virtual space, and WISE, which displays how devices are
running through 2D visual graphics. In addition, the research team in Trinity
College has proposed the simulator called TATUS [6]. TATUS can simulate a
ubiquitous application in a 3D virtual space. TATUS has a wireless network
simulator in it. However, TATUS is developed with 3D-game-engine, and so the
tester has to operate and move a user-character in the virtual space or let multi-
ple characters move based on simple AI. TATUS also simulates packet loss ratio
in wireless communication when characters frequently cross line-of-sight between
devices. However, it is not mentioned in detail how to simulate other physical
quantities in a virtual space in response to human behavior and/or device states.
Sanmugalingam et al. have proposed an event simulator which aims to visual-
ize and test scalability of given location-aware applications developed based on
the proposed event-driven middleware [13]. Roy et al. showed that it is very im-
portant to track location of inhabitants in order to generate various contexts
in smarthome, but they also showed that an algorithm for tracking locations of
several inhabitants in an optimal way is NP-hard [14]. As a result, they have
proposed a framework which stochastically generates likely interaction patterns
between the inhabitants based on the game theory.

Those existing simulators simulate only restricted cases of inhabitants’ behav-
ior because they achieve the behavior manually or based on simple automation.
Thus, they are not enough to confirm that a given ubiquitous application pro-
gram runs as expected for all possible context patterns. They neither simulate it
accurately that inhabitant and device behavior changes physical quantities such
as temperature in the target space. So, it would be hard to guarantee validity of
the given application implementation.

3 UbiREAL Overview

In this section, we briefly outline overview of proposed UbiREAL simulator.

3.1 Objectives and Applications

We first describe a typical ubiquitous application example which automatically
controls home appliances based on contexts. We assume a house consisting of
a living room and several other rooms, where three inhabitants Alice and her
parents are living. We also assume that lamps, TV, video recorder, stereo and air
conditioner as well as various sensors are deployed in the living room, and they
can be controlled through network installed at the house. We suppose to control
those appliances as follows.

– When Alice enters living room, illumination of the room is turned down, and
the stereo begins playing jazz music quietly. The air conditioner is automat-
ically configured at 25 degrees Celsius of temperature and 50% of humidity.
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– Then, her father and mother come into the room. This time, the illumination
is set bright, and the air conditioner is configured at 27 degrees Celsius and
60% of humidity. The stereo begins playing classic music.

– When baseball broadcast begins, TV is automatically turned on with the
baseball channel, if father is in the living room. If father is not present, the
video recorder starts recording the program.

When home appliances are controlled in the way described above, we have
to consider the cases where several inhabitants (application user) have different
preferences of the settings of air conditioner, TV programs or so on. The sound
produced by stereo and TV can conflict with each other. Lamps should not be
controlled so that it continuously repeat turning on and off. Air conditioner and
heater in a room should not be turned on simultaneously. Situations like these
may occur unintentionally when brightness or temperature is within a specific
range.

As seen above, we have to test if home appliances are controlled as application
users intended. But, finding all possible glitches is difficult by only observing
the application behavior for several patterns. Testing rules under many possible
contexts using real appliances in a real house requires tremendous labor and time.

Our UbiREAL simulator has been designed and developed to simulate and
test ubiquitous applications with various contexts. The objectives of developing
UbiREAL include the followings in addition to resolving the problem described
above.
(1) To offer a way to inhabitants (application users) to intuitively check
how devices work

If home appliances are controlled by rules like the case described above, the
rules are sometimes specified from the scratch and/or modified by application
users themselves. In order to allow ordinary people to manipulate rules, the sys-
tem should offer a 3D view of a virtual space with which users can check places
and operations of virtual devices. When the system finds situations (contexts)
that some rules do not work as expected, those situations and wrong operations
should be shown to users through 3D view.
(2) To enable cooperation between virtual devices and real devices

Even if there is no software problem, devices can operate incorrectly due to
hardware failures or other problems. In such a case, it would be convenient if parts
of virtual devices are replaced with real devices. This function also allows users to
perceive how the real devices work based on the context in accordance with the
(virtual) surrounding environment. For example, by applying this function to air
conditioners or lamps, users can perceive the effective temperature or brightness.
It greatly helps users to specify rules so that services are given as expected.
(3) To make device drivers (software) for real devices executable as
virtual devices without large modification

When devices are simulated on existing network simulators like ns-2, the
device drivers have to be written in event-driven way, and thus drivers for real
devices, which are usually written in flow-driven way, cannot be executed “as-is”.
Writing driver software for various virtual devices from scratch costs huge amount
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of labor. Moreover, since drivers for virtual devices and real devices are different,
even if virtual devices are confirmed to work correctly, we cannot guarantee that
real devices should also work correctly.
(4) To allow testers to systematically test the whole application system
by automatically generating many possible contexts

Even using simulation, it would be hard task to generate many possible con-
texts by hand and check whether devices work as expected by simulating the
given application for those contexts.

3.2 UbiREAL Structure

We compose UbiREAL simulator of the following four parts as shown in Fig.1:
(1) Visualizer and GUI for designing virtual Smartspace; (2) Network simulator;
(3) Simulators for physical quantities; and (4) Systematic tester.

Fig. 1. UbiREAL Architecture

Basically, we allow UbiREAL to execute any device driver software 1 devel-
oped for real devices and application program developed for devices (or in a home
server) to be executed as virtual devices without large modification. For this pur-
pose, UbiREAL is designed so that general communication protocols and APIs
for information appliances within UPnP framework such as SOAP and SSDP can
be used on it. However, for visualization purpose, some devices have to send all
states to the simulator when requested. So, software drivers for such devices have
to be modified slightly. Devices with switches manually manipulated by users also
have to send a signal to the simulator when states of these switches are changed.
The states obtained from devices are used for visualization and tests.

Hereafter, we describe the four main functions of UbiREAL.
1 We suppose that the device driver software is executed at user mode of operating

system. It commits to OS operations for controlling its locally attached actuators or
obtaining values from its sensors using, e.g., UPnP library, and exchanges messages
with the device driver software running on other devices.
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Fig. 2. Specifying Route of Avatar

Visualizer and GUI for designing Smartspace This function helps user to create
virtual home and rooms in which virtual devices are placed. Also, this function
helps designing routes which (virtual) application users and other movable devices
trace. Details are described in Section 4.

Network simulator Network simulator simulates communication between virtual
devices as well as between virtual and real devices, taking into account their
positions and obstacles on their line-of-sights. Details are described in Section 5.

Simulators for physical quantities In order to reproduce temporal variation of
physical quantities such as temperature, illumination and loudness in a specific
region in the virtual Smartspace, a dedicated simulator is prepared for each phys-
ical quantity. Details are described in Section 6.

Systematic tester Systematic tester systematically generates many possible con-
texts and tests if given ubiquitous application operates as expected, in coopera-
tion with simulators for physical quantities. Details are given in Section 7.

4 Visualizer and GUI for Designing Smartspace

UbiREAL has a GUI and a visualizer with which application users and/or test ex-
aminers (users, hereafter) can design Smartspace and observe how the Smartspace
works depending on temporal variation of contexts. We call the software to realize
this functionality simply GUI module, hereafter.

4.1 GUI for Designing Smartspace

GUI module allows users to place virtual devices in a 3D virtual space to compose
Smartspace. Appearances of virtual devices can be designed using 3D modeling
software on the market or can be substituted by 3D object data in VRML or
other languages. 3D virtual space such as homes and rooms are constructed by
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(a) (b)

Fig. 3. Visualization of Illumination of Lamps: (a) off, (b) on

(a) (b)

Fig. 4. Visualization of Heater’s State: (a) off, (b) on

(a) (b)

Fig. 5. Visualization of TV’s State: (a) off, (b) on

3-dimensionalizing a floor plan drawing using 3D modeling software. Users place
various objects such as furniture (e.g., desk, chair, etc) and networked appliances
(e.g., TV, stereo, air conditioner and sensor) in the 3D space. Devices are classified
into static objects and movable objects. Static objects are selected from a pull-
down menu, and placed by drag-and-drop with a mouse. Movable objects like a
virtual inhabitant is placed by specifying a route in the 3D space as shown in Fig.
2. Routes can be either specified manually or automatically by the systematic
test function in Section 7. Each route of a movable device can include actions like
pushing button or manipulating remote control, at specified coordinates. Each
movable object which represents an inhabitant is called avatar.
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4.2 Visualization of Smartspace

When a state of a virtual device changes (e.g., lamp is turned on) or physical
environment changes (e.g. room darkens after sunset), these changes should be
observed by users through visually changing appearances of the virtual devices
or virtual space as shown in Fig. 3. UbiREAL visualizer allows users to choose
one view among 2D bird-eye view, first person view from the avatar, and so on.
If there are more than one avatar, view can be switched among those avatars.

Now, we give a simple example of how Smartspace behavior is visualized using
a scenario where a virtual inhabitant with an RFID gets close to an RFID reader,
and consequently air conditioner is turned on.

When the inhabitant gets close to the RFID reader, RFID tag device and
reader device communicate with each other via our network simulator in Sec-
tion 5. Wireless communication is simulated based on positions of the RFID and
RFID reader and obstacles on line-of-sight between them. The RFID reader com-
municates with a home server to turn on an air conditioner. Then, device driver
on the air conditioner updates its state to change direction of its louver. GUI
module obtains the updated state of the air conditioner and changes appearance
of the air conditioner appropriately. The simulators for temperature and humid-
ity also obtain the updated state, and change those physical quantities in the
room gradually as time passes.

UbiREAL has a function to output results of simulation as a log file. So, users
can observe simulation results repeatedly from the log file.

We show snapshots of how Smartspace is visualized in Figures 3, 4 and 5,
when an avatar approaches lamp, heater and TV devices by following the route
in Fig. 2.

5 Network Simulator

In this section, we describe details of the network simulation module of UbiREAL.
As explained before, it is important to allow driver programs implemented for
real devices to be executed in a virtual space, in order to keep compatibility be-
tween virtual and real ones. So, first, we explain the difference between UbiREAL
network simulator and existing network simulators. Then, we describe the archi-
tecture of our network simulator.

5.1 Simulation using Driver Programs for Real Devices

Existing network simulators like ns-2 do not assume that programs for real devices
are used in simulation. Instead, users of these existing network simulators have
to write programs dedicated for virtual devices to be used in simulation. So, even
when simulation was successful, programs must be re-written for real devices to
execute the target application in a real world. In terms of development efficiency,
it is desirable to reduce this labor. However, since many of existing network
simulators require programs for devices to be written in event-driven manner,
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and thus it is difficult to use the programs for real devices for simulation, which
are usually written in flow-driven manner.

In UbiREAL network simulator, programs written in flow-driven manner can
be used in simulation. As we mentioned in Section 4, some devices require modifi-
cations of device driver programs in order to send the latest state of the device to
GUI module of UbiREAL. By changing compile-time options, binary programs
for real devices and virtual devices can be built from the same source program.

5.2 Architecture

For programmers of device drivers, UbiREAL network simulator can be accessed
via ordinary service primitives of TCP/IP protocol stack. Protocols like UPnP
can be used via existing libraries which run on TCP/IP. As for MAC layer, our
network simulator supports IEEE802.11a/b/g, ZigBee and Bluetooth besides or-
dinary Ethernet (10/100/1000MBps). As for network layer, it supports AODV
and DSR to simulate wireless ad hoc networks. The user can change simula-
tion granularity of each layer by selecting one of supported simulation models.
Network configurations of each device such as IP address and ESS ID are given
via configuration files for each device. Physical network structures like subnet of
Ethernet are simulated by virtual hub devices.

Positions of movable devices change as time passes. Conditions of communi-
cation between devices change accordingly, and this can be reproduced by sim-
ulation of physical layer. Physical layer simulation keeps track of the positions
of movable devices, and when each device transmits, e.g., an Ethernet frame,
it decides which devices can receive the frame taking into account positions of
devices and obstacles. It also adds error to frames according to condition of com-
munication. Queries of positions for each device are implemented as ordinary
method invocations. When a device enters wave range of another device, these
devices can hear beacons from each other, and thus these devices will be able
to communicate with each other. When a device receives a frame, the frame is
handed to upper layer protocol.

5.3 Communication between Virtual Device and Real Device

UbiREAL network simulator allows virtual devices to communicate with real
devices using TCP/IP protocol. With this feature, real devices can be used as
the devices placed in the virtual Smartspace during tests. For example, when we
need some of the virtual devices under test to behave especially correctly, real
devices can be used for these virtual devices. This feature is also useful when we
want to test some part of Smartspace through human perception.

By using operating systems like Linux, any form of Ethernet frames can be
transmitted and received. Thus, it is possible to make a PC on which the simu-
lator is running to be regarded as a router connected to the virtual network, and
make real and virtual devices communicate with each other. Also, some network
interface card can alter MAC addresses for every transmitted frame, and this
makes virtual devices as if they are running on the same network as real devices.
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6 Simulation of Physical Quantities

In order to know that a given ubiquitous application runs appropriately in a real
world environment by simulation, we must be able to reproduce the temporal
variation of physical quantities such as temperature and illumination in a virtual
space considering effects of device and human behavior as well as characteristics
of the target space.

Various simulators for real-time 3D environments have been researched and
developed, and Ref.[15] surveys them. For example, Unreal Game Engine [16]
uses a high performance physical engine and it calculates effects of light and
sound. However, these existing simulators focus only on visible or audible physical
phenomena. On the other hand, TATUS [6] simulates the effect of human behavior
with respect to variation of packet loss ratio in a wireless LAN depending on
how frequently human users cross the line-of-sight between devices. However,
other invisible physical quantities are not simulated interactively with devices
and human users.

UbiREAL simulates invisible physical quantities such as temperature, humid-
ity, electricity and radio as well as visible (audible) quantities such as acoustic
volume and illumination. In order to support any physical quantity, we adopted
a publish-subscribe model for communication between virtual sensor devices and
physical quantity simulators. Each physical quantity simulator is implemented
based on appropriate formula in Physics for simulating a physical quantity. Each
software driver of a sensor device concerning a physical quantity subscribes to
the corresponding physical quantity simulator with parameter values necessary
to update it. Each physical quantity simulator periodically calculates the latest
value of the physical quantity and sends the value to subscribers if it has been
changed. As necessary parameter values, each physical quantity simulator needs
the previous quantity value, the characteristics such as size and capacity of the
target room in the virtual space, device states, human behavior, other physical
quantities and the time elapsed from the previous calculation.

For example, when we want to simulate temperature, the following formula
in Physics is used as necessary parameters where C denotes heat capacity of the
target room, and t, ∆T (t) and Q(t) denote elapsed units of time, temperature
difference and obtained heat quantity from previous evaluation, respectively.

∆T (t) =
Q(t)
C

Each physical quantity simulator is implemented as a Plug-In program. Thus,
it is easy to add new physical quantities and replace each Plug-In program by
advanced one.

7 Systematic Testing

UbiREAL provides a function to systematically test the correctness of given ap-
plication software in a given environment. For this purpose, we define a formal
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model to represent the service specification (i.e., service requirement) of ubiqui-
tous applications. We also define the correctness of the application with respect
to the service specification. Based on the formal model, we propose a method for
systematically test the correctness of the application.

7.1 Formal Model for Service Specification

A Smartspace U is defined as a tuple U = (R,D), where R = {r1, ..., rn} denotes
the set of rooms in U and D = {d1, ..., dm} denotes the set of devices.

Each room ri ∈ R has the following attributes: pos representing the position
of ri in U ; base representing the shape and size of ri’s base; cap representing the
capacity of ri; and physical quantities of ri such as temperature temp, humidity
humid, heat capacity heatcap, illumination illum and acoustic volume vol in ri.
Each attribute is denoted like ri.temp.

We assume that initial values of physical quantities at each room are given
in advance. If doors or windows are open in some rooms, we suppose that the
physical quantities calculated for those situations are given as initial attribute
values.

Each device dj ∈ D has the following attributes: r representing the room
where dj is deployed; pos representing d′js position in r, and state representing
the state of dj . Each attribute is denoted e.g., by dj .state.

Each device dj may have sensors which can obtain physical quantities around
the device as sensed values. Device dj may have actuators which execute actions
to change physical quantities such as cooling, dehumidifying and lighting. As a
result of action, dj .state and some physical quantities of room dj .r may change.

We assume that each attribute of a room or a device can have a discrete value
in a predefined range. We define the global state of Smartspace U as a tuple of
values for attributes of all rooms and devices in U .

In the proposed test method, we assume that the service specification Spec
is given as a set of rules AP = {l1, .., ll} and a set of requisite propositions
P = {p1, ..., pl}. Here, each rule li = (ci, ai) is a tuple consisting of a condition
ci and an action ai, representing that ai is executed when ci holds. Here, as
condition ci, only linear inequalities with constants and sensor variables can be
specified. As ai, an action to a device can be specified.

We assume that there are no conflicting rules which simultaneously execute
different actions to a device2.

We can specify each proposition pk ∈ P with temporal logic such as CTL [17].
In this paper, we restrict each proposition to be represented by the following style
of CTL.

AG(φ1 ⇒ AF (φ2))

Here, φ1 and φ2 represent propositions and are defined to be true or false for
each state of U . AG(φ) means that proposition φ is true for every state reachable
2 Such conflicting rules can automatically be detected when specifying rules with the

technique in [2].
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from the current state, and AF (φ) means that φ will eventually be true in a state
reachable from the current state.

As a result, the above example proposition means that if the system is in a
state which makes φ1 true, the system will eventually transit to a state which
makes φ2 true, and that this always happens.

Using temporal logic like CTL, we can intuitively specify a proposition such
that “if User1 is in room A, then the temperature and the humidity of room A
will eventually be regulated around 23C and 60%, respectively”.

Currently, the proposed test function is mainly targeting rule-based applica-
tions since we can easily obtain the specification from the application scenario.
In order to support applications which are not rule-based, we may need a tool to
facilitate derivation of the set of rules from the application scenario. It is beyond
the scope of this paper.

7.2 Correctness of Application and Testing Method

Given Smartspace U with initial attribute values, the service specification Spec =
(AP, P ) and the service implementation I under test, we say I is correct with
respect to Spec iff the following conditions hold.

(1) For every rule l = (c, a) ∈ AP and every state s of U , if condition c holds for
state s, then action a is executed.

(2) Every proposition p ∈ P holds.

In order to test condition (1), we must generate all possible states of sensor
values for each rule of AP , and input each state to I and observe whether the
expected action is executed. However, all possible states of sensor values would
be numerous even when we restrict sensor values to be discrete. So, in the pro-
posed method, for a predefined number C, if each rule fires for C sample states
which approximately cover all possible states, we regard that the rule is correctly
implemented in I. By using a large number for C, we can improve reliability of
tests, whereas the cost of tests increases. So, appropriate number must be decided
as C by test examiner considering tradeoff.

For example, for a condition of a rule “if temperature and humidity are more
than 28C and 70%”, we can generate sample states (temp, humid)={(28,70),
(28,80), (32,70), (32,80), (36,90)} when C = 5, where other attribute values in
states are omitted.

In order to test whether implementation I satisfies each requisite proposition,
we must examine how the action executed by some rule influences the physical
quantities of the room as time passes. In the proposed method, we use simulators
for physical quantities to know the physical quantities at each time after some
action is executed. By obtaining the latest values of physical quantities from the
simulators periodically, we can test whether each proposition holds or not.

When multiple devices are running at the same time in a room, physical
quantities may change in a different way compared with the case when a single
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device is running. For example, if an air conditioner is working at a specified
power, how fast the temperature/humidity decreases/increases may be different
among cases with or without other running devices such as TV and PC located
in the same room. To cope with this problem, for a room with n devices, we test
I for all possible combinations of those devices, that is, 2n patterns (each device
is working or not) as a total. If n is large, the patterns will be numerous. In that
case, we can reduce the patterns by eliminating some patterns which unlikely
happen.

7.3 Test Sequence Generation

In this section, we briefly explain how to generate test sequences using detailed
examples. Suppose that the service specification Spec = (AP, P ) is given as
follows.

AP = {(Exist(u1, r1) ∧ 28 ≤ r1.temp ∧ 70 ≤ r1.humid, Aircon1.on(24, 60)),

(Exist(u2, r1) ∧ ¬Exist(u1, r1) ∧ 30 ≤ r1.temp ∧ 60 ≤ r1.humid, Aircon1.on(28, 50)),

(Exist(u1, r2)∧Exist(u2, r2)∧Day = ”Sun”∧ Time = ”6 : 30pm”, TV2.on(”CNN”)),

(”11 : 00pm” < Time, Lamp1.off), ....}
P = {AG(Exist(u1, r1) ⇒ AF (23 ≤ r1.temp ≤ 25)),

AG(”11 : 00pm” < Time ⇒ AF (r1.illum ≤ 10))}
The first rule in AP specifies that air conditioner Aircon1 should be turned

on with 24C of temperature setting and 60 % of humidity setting, if user u1 is
in room r1 and room temperature and humidity are more than 28C and 70 %,
respectively. The second rule similarly specifies the behavior of air conditioner
based on user u2’s preference, but if users u1 and u2 are in room r2 at the same
time, this rule are not executed (i.e., the first rule for u1 is executed prior to
u2’s rule). The third rule specifies the control of television TV2 so that it will be
turned on with channel “CNN” if two users u1 and u2 are in room r2, the day is
Sunday and the time is 6:30PM. The last rule specifies lamp Lamp1 to be turned
off if the time is over 11:00PM.

The first proposition in P specifies that the room temperature of r1 will
eventually be regulated between 23C and 25C if user u1 is in room r1. The
second proposition specifies that the illumination of room r1 will eventually be
regulated less than 10 lux if the time is over 11:00PM.

The above rules in AP , our proposed test method generates the test sequence
as shown in Table 1.

In Table 1, ← means the value assignment, Check(a) represents a function
which returns true if action a has been executed, and parameters like %v11 are
assigned appropriate values which are generated every test sequence execution.
During test sequence execution, if every Check returns true, then we think that
the test is successful, otherwise, the test fails.

For each proposition in P , our method generates the test sequence as shown
in Table 2.

In Table 2, CheckProp(φ) represents a function which periodically checks if
φ holds for the current state of U . It returns true if φ holds, and returns false if φ
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Table 1. Test Sequence for Rules

(1) u1.pos ← r1.pos + %v11; r1.temp ← %v12; r1.humid ←
%v13; Check(Aircon1.on(24, 60))
(2) u1.pos ← r1.pos + %v21; u2.pos ← r1.pos + %v22; r1.temp ← %v23; r1.humid ←
%v24; Check(Aircon1.on(24, 60))
(3) u2.pos ← r1.pos + %v31; u2.pos ← r3.pos; r1.temp ← %v32; r1.humid ←
%v33; Check(Aircon1.on(28, 50))
(4) u1.pos ← r1.pos + %v41; u2.pos ← r1.pos + %v42; Day ← ”Sun”; Time ← ”6 :
30pm”; Check(TV2.on(”CNN”))
(5) T ime ← %v51; Check(Lamp1.off)

Table 2. Test Sequence for Propositions

(1) u1.pos ← r1.pos + %v11; r1.temp ← %v12; r1.humid ← %v13; CheckProp(23 ≤
r1.temp ≤ 25)
(2) T ime ← %v51; CheckProp(r1.illum ≤ 10)

does not hold for a predefined time interval. Test sequence execution is conducted
similarly to the test sequence for rules.

The test sequence is likely to be long. To shorten the length and reduce the
time for testing, we can combine multiple test sequences and execute part of
them simultaneously so that the common part is executed only once. Also if test
examiner wants to execute test sequences with visual 3D animation in real-time,
we can calculate the shortest route of a user to travel all devices in U . The
positions of the calculated route are assigned to parameters such as u1.pos and
u2.pos in the test sequence every execution of test sequence.

7.4 Inconsistency Detection

If some rules are inconsistent (e.g., in some contexts, cooling and heating devices
run simultaneously at the same room), they should be detected. With UbiREAL
simulator, basically users can detect such rules through graphical animation dur-
ing simulation time.

There are other possibilities to realize inconsistency detection, although we
do not go into detail. Some of them are shown below.
(1) Implement a tool to solve expressions consisting of logical product of condi-
tions specified in rules which conflict with each other (e.g., simultaneously operate
the same device) [2].
(2) Add a test sequence to detect, e.g., abnormal oscillation of some physical
quantities.

8 Experiments

In this section, we describe the results of experiments to test performance of the
proposed method. We used a PC with AMD Athlon 64×2 4200+ (CPU), ATI
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Radeon X1300Pro (graphics card), 2GB of memory on Windows XP Pro SP2
and Java JSE5.0 in the experiments.

8.1 Performance of Test Sequence Execution to Validate Rules

First, we conducted the following experiment in order to check simulation speed
when testing if action a is correctly executed in each rule l = (c, a) ∈ AP , as
described in Section 7.

We placed in a virtual space a temperature sensor device, an air conditioner
device and a home server device with a rule l which is “If the temperature is
higher than 26 degrees Celsius, turn on the air conditioner”. We measured the
time t1 when temperature sensor detects temperature change and the time t2
when the execution of the action to turn on the air conditioner completes, in
order to know the response time defined by t = t2− t1.

In the experiment, we assumed that all devices are connected to a network
via an Ethernet hub, and devices communicate with each other by standard
protocols in UPnP framework. In the experiment, the network simulator only
emulates protocol layers above session layer, which includes the set of UPnP
protocols. A home server device is developed based on CADEL framework [2] so
that it evaluates condition c of rule l and sends a request to execute a to a target
device if c holds.

By repeating the experiment more than 100 times, we found that it takes
approximately 17.5ms to execute a test sequence for validating a rule. This sug-
gests that supposing ordinary home environments, if there are 5 inhabitants, 100
devices, one rule is associated for each pair of a device and an inhabitant, and 100
tests are executed for each rule (i.e., C = 100), total time needed for the whole
tests is about 5× 100× 100× 0.02s = 17 minutes, and we believe that this would
be practical enough. In reality, tests may take longer time since multiple devices
are executed in parallel and conditions of all rules must be evaluated periodically
in a PC executing simulation.

8.2 Performance of Simulation with Visualization

Next, we evaluated performance of the simulator when we use visualization func-
tion of UbiREAL. It is important to check if simulations can be performed in real
time in order to allow users to intuitively observe how devices work as context
changes through realtime 3D graphics. In the experiments, we let GUI module,
network simulator module and a home server device developed based on CADEL
framework run cooperatively, increasing the number of devices and rules. We
measured framerate of 3D view when all rules are executed. We used 3 virtual
rooms, and placed some objects in the rooms. The screen resolution of 3D view
is 1600 × 1200 pixels, and the number of polygons drawn is 103,000 at maximum
independently of the number of devices. We changed the number of devices from
0 to 25 and assigned two rules to each device, which means that the number
of rules is changed between 0 and 50. The route of an avatar is set so that all
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Fig. 6. Achieved Framerate vs. Number of Rules

rules are executed one by one. We measured framerate of visual simulation from
avatar’s view when the avatar moves following the route.

The experimental results are shown on Fig. 6. Fig. 6 shows that even when the
numbers of devices and rules increase, there is only small influence to framerate,
and thus realtime simulation is feasible even with large number of devices and
rules.

9 Conclusion

In this paper, we proposed a ubiquitous application simulator UbiREAL. The
UbiREAL simulator can simulate Smartspace so that users can intuitively grasp
how devices are controlled depending on temporal variation of contexts in a
virtual space and systematically test the correctness of the given application
implementation for a given environment.

Main contribution and novelty of UbiREAL are that it incorporates simu-
lators for physical quantities and network simulator with a visualization mech-
anism which cooperate to achieve systematic tests for ubiquitous applications
using software for real devices. Through experiments, we showed that the tests
for validating rules can be conducted in practical time for realistic ubiquitous ap-
plications, although the tests for requisite propositions depend on how accurately
simulating temporal variation of physical quantities. Part of our future work in-
cludes evaluation of systematic test performance for requisite propositions with
accurate physical quantity simulations.
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