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Abstract. In this paper, we propose a new video delivery method calledMTcast
(Multiple Transcode based video multicast)which achieves efficient simultane-
ous video delivery to multiple users with different quality requirements by relying
on user nodes to transcode and forward video to other user nodes. In MTcast, each
user specifies a quality requirement for a video consisting of bitrate, picture size
and frame rate based on the user’s environmental resource limitation. All users
can receive video with the specified quality (or near this quality) along a single
delivery tree. The main characteristics of MTcast are in its scalability, high user
satisfaction degree in received video quality, short startup latency and robustness
against node failure. Through simulations, we have confirmed that MTcast can
achieve much higher user satisfaction degree and robustness against node failure
than the layered multicast method.
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1 Introduction

There is a demand for an efficient video delivery method forheterogeneous user nodes
which have different computation powers, display sizes and available bandwidths. There
are several approaches for simultaneously delivering video to multiple users with differ-
ent quality requirements. In the multiversion technique [1], multiple versions of a video
with different bitrates are prepared in advance so that the best one can be delivered to
each user, within resource limitation. In the online transcoding method [2], an origi-
nal video is transcoded at a server or an intermediate node (i.e. proxy) to videos with
various quality, according to receivers’ preferences, and forwarded to the receivers. In
the layered multicast method [3, 4], video is encoded with layered coding techniques
such as in [5] so that each user can decode the video by receiving arbitrary number of
layers. Since each layer is delivered as an independent multicast stream, each user can
receive as many layers as possible within his/her resource limitation. In this method, as
the number of users increases, more layers are required in order to improve user satis-
faction degree. However, decoding video from many layers consumes large processing
power and buffers. In [3], a method for optimizing bitrate of each layer to maximize user



satisfaction degree is proposed. In the multiversion method, the control mechanism is
simple, but not efficient in terms of server storage and network bandwidth usage. In
the multiversion and layered multicast methods, there can be a large gap between the
requested quality and the delivered quality if there are not enough number of versions
or layers. The online transcoding method can satisfy all the above requirements since
it can transcode original video to arbitrary quality video. But, large computation power
required for transcoding can be a problem.

There are many studies on video streaming in peer to peer networks. [6] has pro-
posed the Overlay Multicast Network Infrastructure (OMNI). In OMNI, each user node
works as a service provider as well as a service user, and a multicast tree is composed
of user nodes so that the video delivery service is provided to all the user nodes through
the tree. OMNI can adapt to the change of the user node distribution and the network
conditions. [7] has proposed CoopNet where traditional client-server based streamings
are augmented when the load of the video server exceeds it’s limit. In CoopNet, user
nodes cache parts of stream data, and deliver them through multiple diverse distribution
trees to the user nodes while the server load is high. OMNI and CoopNet aim at adapt-
ing the video delivery service depending on the dynamic change of network conditions,
server load and so on. However, they do not treat video delivery to user nodes with
different quality requirements.

We propose a new video delivery method calledMTcast (Multiple Transcode based
video multicast)which achieves efficient simultaneous video delivery to multiple het-
erogeneous users by relying on user nodes to transcode and forward video to other user
nodes. In MTcast, each user specifies a quality requirement for a video consisting of bi-
trate, picture size and frame rate based on the user’s environmental resource limitation.
All users can receive video near specified quality along a delivery tree. Each user can
change the quality requirement each time segment or each video shot.

We have considered the following criteria : (1)high scalabilityfor accommodating a
large number of users, (2)high user satisfactionin the sense that the delivered quality is
close to the required quality, (3)small resource consumptionwithin available resource
of each user node, (4)short startup latencyto start playing back video quickly, (5)
reasonable number of transcoding timesfor keeping good video quality as well as short
delivery latency, and (6)high robustnessfor continuing video delivery service even with
node/link failures.

In order to achieve the above (1) to (3), a delivery tree calledtranscode treewhose
root is the sender of a video content, is constructed as a variation of a perfectn-ary tree,
where user nodes with higher quality requirements are located near the root of the tree,
and nodes with lower quality requirements are located near leaves. Nodes are placed
according to their computation power, available downstream and upstream bandwidths.
Each node in the tree receives a video stream, transcodes it to lower quality video in
real time and forwards it to its children nodes. In order to achieve the above (4) to (6),
nodes are grouped so that each group hask members with similar quality requirements.
These groups are calledlayers. All nodes in a layer receives the video with the same
quality from their parent nodes along the transcode tree. We let the representative node
of each layer keep the complete information of the tree. This allows a new receiver
to easily find the layer which has the closest quality to its own quality requirement



and to quickly send a request to the node in the layer to start delivery of the video. In
order to accommodate new receivers or to replace faulty nodes with normal ones, we
let each layer keep a certain amount of extra computation power and available upstream
bandwidth (computed from the value ofk). In general, if we use a large number fork,
we can improve performance of the above (4) to (6). However, user satisfaction degree
may be reduced since the received video quality is averaged overk members. So, in the
proposed method, we adopted an approach to dynamically increase the value ofk as the
total number of receivers increases. When the number of receivers is sufficiently large,
we can keep both user satisfaction and system robustness high.

After certain time elapses, extra resources at a layer might have been exhausted.
So, our method reconstructs the transcode tree periodically or at each time boundary
between subsequent video shots. When video delivery requests and failures occur af-
ter extra resources of a layer have been exhausted, they are processed at the next tree
reconstruction.

We have investigated performance of MTcast by simulations using network topolo-
gies generated by Inet3.0 [8]. As a result, we have confirmed that MTcast can achieve
both higher user satisfaction degree and higher robustness than the layered multicast
method.

2 Target Environment
In this paper, we deal with a method for simultaneously delivering a video content to
multiple heterogeneous userswho have different available bandwidths, different com-
putation power, and different display resolutions. Here, we assume the following types
of user terminals, types of communication infrastructures and target contents.

– user terminal: desktop PC, laptop PC, PDA, cellular phone, etc.
– communication infrastructure: Either fixed broadband (leased lines, ADSL, CATV,

etc.) or wireless network (wireless LAN, W-CDMA, Bluetooth, GSM/PDC, etc).
– the total number of users: 500 to 100,000
– target contents: video (both recorded and live)

We target a video delivery service which starts to transmit a video content to all
receivers at the same starting time like TV broadcast. Even after the starting time of the
video, users can start to receive the video anytime, but the video can be watched from
the scene currently in transmission.

We assume that user nodes are connected to each other through overlay links, and
that each node uses overlay multicast to transmit/receive streams to/from the other node.

In the multicast tree, we let each user node except leaf nodes transcode a video
stream and forward it to its children nodes, playing back the stream.

From the above discussion, the main purpose of this paper is to build and manage
the multicast tree which satisfies criteria (1) to (6) in Sect. 1 and to devise the efficient
video delivery method using the tree.

3 MTcast

In this section, first we briefly define notations used in our MTcast algorithm, and then
explain the details of MTcast.



3.1 Definitions

Let s denote a video server, andU = {u1, ..., uN} denote a set of user nodes. We as-
sume that for eachui ∈ U , available upstream (i.e., node to network) bandwidth and
downstream (i.e., network to node) bandwidth are known in advance. We denote them
by ui.upper bw andui.lower bw, respectively. Letui.q denoteui’s video quality re-
quirement. In general, asui.q, multiple video parameters such as bitrate, picture size
and frame rate are specified. In this paper, we assume thatui.q represents only bitrate
of video1. Let ui.ntrans(q) denote the maximum number of simultaneous transcod-
ing which can be executed byui for videos with qualityq. Let ui.nlink(q) denote the
maximum number of simultaneous forwarding of videos with qualityq which can be
performed byui. ui.ntrans(q) andui.nlink(q) are calculated from computation power
of ui, ui.upper bw and video quality.

In the proposed method, we construct a multicast tree wheres is the root node and
user nodes inU are intermediate (internal) or leaf nodes. Hereafter, this multicast tree
is called thetranscode tree.

3.2 Structure of Transcode Tree

Internal nodes in the transcode tree transmit a video stream to children nodes. In the
proposed method, we assume that fanout (degree) of each node is basically a constant
(denoted byn). As we will explain in Sect. 3.3, we decide the value ofn depending on
available resources of user nodes.

In order to reduce the number of transcoding between the root node and each leaf
node, we construct the transcode tree as a variation of completen-ary tree where degree
of the root node is changed tok instead ofn (k is a constant, and explained later). In
the transcode tree, for each nodeui ∈ U and each of its children nodesuj , ui.q ≥ uj .q
holds.

In order to tolerate node failures and to shorten startup delay of video delivery, ev-
ery k nodes inU are bunched up into one group. We call each group alayer, where
k is a predetermined constant, as shown in Fig. 1. We let user nodes in the same layer
receive video with the same quality. This quality is called thelayer quality. A represen-
tative node is selected for each layer. Parent-child relationship among all layers on the
transcode tree is called thelayer tree.

An example of the transcode tree withn = 2 andk = 6 is shown in Fig. 1. Here,
small circles and big ovals represent nodes and layers, respectively. Each bitrate (e.g.,
500kbps) represents the layer quality.

3.3 Construction of Transcode Tree

In our method, the transcode tree is calculated in a centralized way by one of the nodes.
The way of deciding the calculation nodeuc is explained later. We assume thatuc has
information of a video servers and user nodesU ′ ⊆ U who have requested video. Our
tree construction algorithm consists of the following three steps.
1 A method to treat a parameter vector as quality is discussed in [9].
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Fig. 1. Example of Transcode Tree, where
n = 2, k = 6
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Fig. 2.Tree construction in order of depth-first
search

In the first step, our algorithm dividesU into the set of candidate internal nodesUI

and the set of leaf nodesUL. We always puts into UI .

u.ntrans(u.q) ≥ 1 (1)

u.nlink(u.q) ≥ n + 1 (2)

For each nodeu ∈ U , the algorithm checks if the above inequalities hold or not. If
they hold foru, thenu is put intoUI , otherwise put intoUL. The above inequalities (1)
and (2) represent whether nodeu can perform transcoding of one or more videos and
whetheru can forwardn + 1 video streams, respectively.

After that, if |UI | < 1
n |U |, quality requirements of|UL|− n−1

n |U | nodes inUL with
larger upstream bandwidths are reduced so that the inequalities (1) and (2) hold. Then,
those nodes are moved toUI . By the above procedure,|UI | ≥ 1

n |U | always holds.
In the second step, the algorithm assigns the set of all nodesU to layers. Elements

of UI are sorted in decreasing order of their quality requirements and every bunch ofk
elements is packed to an internal layer. Here, we select the first node of each layer as the
representative node of the layer. The average value of quality requirements is assigned
as the layer quality. For the set of leaf nodesUL, elements are similarly packed to leaf
layers.

In the last step, the transcode tree is constructed. The algorithm sorts internal layers
in decreasing order of layer quality, and constructs a completen-ary tree of those inter-
nal layers so that the layer quality of each layer does not exceeds that of its parent layer.
Next, the algorithm attaches each leaf layerL to the internal layer whose layer quality
is closest toL. If the layer quality ofL exceeds that ofL’s parent layer, the layer quality
of L is adjusted to that ofL’s parent. The order of assigning internal layers ton-ary tree
could be depth-first, breadth-first, or so on. Example using depth-first is shown in Fig.
2.

Finally, the transcode tree is obtained by assigning internal nodes and leaf nodes to
internal layers and leaf layers in decreasing order of their required quality, respectively.
Adaptation to available bandwidth between nodes

In our method, after constructing the layer tree, each node which belongs to the
child layer selects an actual delivery node fromk nodes in the parent layer. Whether
each child node can receive the video with the requested quality or not depends on the
available bandwidth on the path, that is, links on a physical network connecting the child
node to the parent node. Below, we describe how to decide the parent nodes by taking
into consideration of the physical topology of the network and available bandwidths



on paths in the network. Here, we also consider the case that two or more overlay links
share the same physical links and thus compete the available bandwidths on those links.

Let C and P be the sets of nodes which belong to a layer and its parent layer,
respectively. We suppose that, for each pair of nodes between a child layer and its parent
layer, the physical path and the available bandwidth can be obtained with tools such as
tracerouteandpathload[10], respectively. Letbw(c, p) andL(c, p) denote the available
bandwidth measured with a tool like pathload (calledmeasured available bandwidth,
hereafter) and the set of links betweenc ∈ C andp ∈ P except for links attached
to nodesc andp, respectively. Next, we estimate the worst-case available bandwidth
of each overlay link (calledestimated available bandwidth, hereafter) by considering
some of links which are shared among multiple overlay links. Initially, for each pair of
nodes(c, p) ∈ C×P , the estimated available bandwidth of each linkl ∈ L(c, p) is set to
bw(c, p). The estimation is done based on thelink stressof each link (i.e., the number
of overlay links which use the same physical link for the same data transmission) as
follows. (1) The initial link stress is set to 0 for each physical link. (2) For each pair
(c, p) ∈ C×P and for each linkl ∈ L(c, p), the link stress ofl is incremented. However,
once the link stress has been already incremented by nodec, we do not let other paths
includingc increment the link stress of the same link to avoid duplicate counting. Based
on the measured available bandwidth and the link stress of each physical link, we decide
the parent node of each child node as follows.

– (i) For eachc ∈ C, the following step (ii) is examined in increasing order of node
ID.

– (ii) For eachp ∈ P , whether nodep can deliver the video with the specified bitrate
to nodec or not is decided based on the estimated available bandwidth on path
L(c, p). If there is no parent node which has enough available bandwidth for the
video delivery to nodec, nodec is moved to a lower quality layer. If only a node
can deliver video toc with required bitrate, this node is selected as the parent node
of c, and the following step (iv) is executed. If there are multiple nodes which can
deliver video to nodec with the required bitrate, the following step (iii) is applied
to selecting the parent node ofc.

– (iii) For each nodep ∈ P which can deliver video toc with the required bitrate,
the new estimated available bandwidth for each link inL(c, p) is calculated by
dividing the current estimated bandwidth by the link stress. One node with the
largest estimated available bandwidth is selected as the parent node ofc.

– (iv) Once nodep is selected as the parent ofc, we re-calculate the link stress of each
link l ∈ L(c, p) without incrementing it by the paths includingc and subtract the
bitrate of the video from the estimated available bandwidth ofl. If some bandwidth
is still remaining inl, it can be used for another overlay link.

We compared our bandwidth adaptation method with hop count first method where each
node greedily selects a parent node which has the minimum hop count. From experi-
ment, we confirmed that our bandwidth adaptation method can achieve higher success-
ful rate (≈ 1.0) of finding parent node which has enough bandwidth to stream video
than that of the hop count first method (≈ 0.65) in the similar environment described in
Sect. 4.



How to decide appropriate values ofn and k
In our method, the transcode tree is constructed as a variation of a completen-ary

tree. So, as the value ofn becomes large, the tree height (i.e., the number of transcod-
ing) also decreases. Since the required upstream bandwidth of each node increases in
proportion ton’s value, the value ofn must be carefully decided considering upstream
bandwidth limitation of each node. We can decide the maximum value ofn so that the
number of nodes satisfying inequalityu.nlink(q) ≥ n + 1 is equal to1

n |U |. If f nodes
may leave from a layer at the same time before the transcode tree is reconstructed, the
remainingk− f nodes in the current layer must transmit video streams ton ·k children
nodes. So, the following inequalities must hold in order to recover fromf simultaneous
failures in each layer. Thus, the appropriate value ofk can be decided from values ofn
andf .

(k − f)u.nlink(q) ≥ n · k ∧ (k − f)u.ntrans ≥ d k

u.nlink(q)
en (3)

3.4 Behavior of MTcast

Startup Behavior
Let t denote the time of video delivery. Each user who wants to receive video stream

sends a video delivery request to the video servers before timet − δ. At time t −
δ, s calculates the transcode tree with the algorithm explained in Sect. 3.3. Here,δ
is the time to calculate the transcode tree and distribute the necessary information to
all nodes.s also decides the nodeuc which calculates the transcode tree next time.
uc is selected from representative nodes of layers which have sufficient downstream
bandwidths. Next,s distributes the information which is necessary for video delivery to
all nodes inT .

For information distribution,s composes dataI which contains the complete infor-
mation onT , its layer tree, representative nodes and quality of layers, anduc. Then, it
sendsI to the representative node of the root layer. Then, the node forwards the infor-
mation to its children layers’ representative nodes. DataI is propagated until all leaf
layers’ representative nodes receive it. When each representative node receives the data
I, it sends part of the information inI to member nodes of the same layer. We let each
representative node keep (a) the whole layer tree with each layer’s layer quality and
representative node’s address, and (b) its responsible layer and addresses of the layer’s
member nodes. We also let each node keep (1) addresses and layer quality of children
nodes, (2) current layer’s quality and responsible node’s address, (3) parent node’s layer
and its responsible node’s address, and (4) nodeuc to calculate the transcode tree next
time. By the above steps, information of the transcode tree is shared among all nodes
and video gets ready to be delivered.

How to cope with new delivery requests and node failures
As explained in Sect. 3.3, each node in an internal layer has an extra upstream

bandwidth for forwarding one more video stream. A user nodeunew who has requested
video delivery after timet can use this extra bandwidth to receive a video stream. Here,
the fanout of the forwarding nodeuf which sends a stream tounew is allowed to be



n + 1 tentatively. The forwarding nodeuf does not need to transcode a video stream
for unew, sinceuf is already transmitting a video stream ton children nodes and it
transmits the same stream tounew.

If one or more nodes in a layer fail or suddenly leave from the transcode tree, all
of their descendant nodes will not be able to receive video streams. Our method al-
lows children nodes of the failure nodes to find alternative nodes in the same layer as
those failure nodes and to ask them to forward video streams. Therefore those alterna-
tive nodes use their extra upstream bandwidths similarly to the case of processing new
delivery requests.

As we will explain later, the transcode tree is reconstructed periodically, the fanout
of each stream is reduced ton or less thann and the consumed extra upstream band-
width is regained after reconstruction.

If the representative node of a layer fails, children nodes of the representative node
cannot find new parent nodes. Thus, one of other nodes in the layer becomes sub rep-
resentative node, and nodes in children layers keep addresses of these nodes. When the
representative node fails, one of children nodes of the representative node sends a switch
request to the sub representative node so that the sub representative node becomes the
new representative node. If a sub representative node fails before the representative
node fails, one of other nodes becomes a sub representative node.
Procedure for new delivery requests

We assume that a new user nodeunew knows at least one nodeu∗ in the transcode
tree which is already receiving a video stream.unew tries to find the best node in the
transcode tree which can beunews’s parent node in the following procedure. (1)unew

sends a query with its quality requirementunew.q and its address tou∗. (2) If u∗ is not
a responsible node of any layer, it forwards the received query to the responsible node
ur of u∗’s current layer. (3) Whenur receives the query, it sends the information of the
layer tree tounew. (4) Whenunew receives the layer tree, it finds the layer which has
the layer quality closest tounew.q and sends a video delivery request to the responsible
nodeu′

r of the layer. (5)u′
r selects a nodeu′ and forwards the request tou′ which has

the required extra upstream bandwidth. (6) Finally,u′ starts to deliver a video stream to
unew.

Recovery from node failure
We let each nodeu monitor status of data receiving in real-time, andu thinks that

node failure happened when it does not receive any data (or the average data reception
rate is much less than the expected one) during a specified time period. Whenu detects
failure of its parent nodeup, u sends a video forwarding request to the representative
node ofup’s layer. Then, similarly to the case of a new video delivery request, the video
stream is forwarded from an alternative node if it has an extra upstream bandwidth. At
u, video can be played back seamlessly by buffering certain time of video data during
the above switching process.

Reconstruction of Transcode Tree
User nodeuc reconstructs the transcode tree in the following steps. We assume that

all nodes know the timetr when the reconstructed transcode tree is in effect.
Before timetr − δ′, each nodeu sends a new quality requirement which will be

effective aftertr to the representative node ofu′s current layer, ifu wants to change



video quality. Here,δ′ is the time to gather quality requirements from all nodes, cal-
culate the transcode tree and distribute the necessary information to (part of) nodes.
When the representative nodeuL of each layerL receives quality requirements from
all members ofL and those from representative nodes ofL’s children layers (ifL has
children layers),uL sends the unified list of quality requirements toL’s parent layer’s
representative node. Finally, the representative node of the root layer sends the received
list of quality requirements to nodeuc. Finally,uc has quality requirements of all nodes
which will be effective after timetr.

Then, nodeuc calculates the transcode tree with the algorithm in Sect. 3.3 and
distribute to all nodes the information for the new transcode tree and the nodeu′

c which
calculates the tree next time, as explained in Sect. 3.3.

At time tr, all nodes stop receiving streams from current parent nodes and the nodes
in the root layer of the new transcode tree starts to deliver video streams. Nodes in inter-
nal layers also forward video streams after receiving them. The video stream transmitted
along the new transcode tree arrives after a certain time lag due to transcode and link
latency. So, during the time lag, each node plays back video from its buffer to avoid
blank screen.

For the next reconstruction of the transcode tree, the buffer of each node must be
filled with video data of the above time lag. This process is done by transmitting the
video stream slightly faster than its playback speed. This fast transmission requires
more computation power for transcoding and more bandwidth for forwarding video
data. Letα denote the ratio of the above time lag over the time period between two
subsequent tree reconstructions.α is a real constant number between 0 and 1. Then this
fast transmission requires computation power and upstream/downstream bandwidths
(1 + α) times as much as the normal transmission.

Reconstruction of the transcode tree may greatly change positions of nodes in the
tree. So, we let nodes closer to the root node play back video with larger delay by
buffering certain time of video data. Data amount to be buffered can be decided with
statistic information calculated from received video streams.

Validity of assumptions
As described in Sect.3.2, if there are not enough number of candidate internal nodes,

part of leaf nodes which have larger upstream bandwidths are transformed into inter-
nal nodes by decreasing their quality requirements. This could be the largest factor of
users’ unsatisfaction. Thus, the proposed technique is especially effective if (i) there
are many users who have larger bandwidths compared to quality requirements. Also,
our technique is effective if (ii) users’ quality requirements are distributed widely, since
the proposed technique can flexibly adjust video quality by transcoding, compared to
layered multicast techniques.

Hereafter, we give some typical environments where the above conditions (i) and
(ii) hold. Under the following three example environments, condition (i) holds. (1) A
video delivery system in which users pay fee according to video quality. (2) An envi-
ronment where user’s available network bandwidth is much larger than bitrate of video.
(3) An environment where video quality is restricted by display resolution rather than
bandwidth. Regarding (1), even if a user has large available network bandwidth, the user
may want to keep video quality low to save on fee. Regarding (2), if a user is connecting



to the Internet through the optical fiber network, available network bandwidth is usually
much larger than bitrate of video, and thus there can be many users with large unused
network bandwidth if such a network becomes popular. Regarding (3), it is possible that
a user watches video using a portable game console or a PDA. These devices normally
have screens with resolutions smaller than VGA, and it is quite unlikely that users of
these devices request larger resolution than that, even if plenty of network bandwidth is
available.

Next, we give three examples under which condition (ii) holds. (1) Watching mul-
tiple videos simultaneously on a single screen. (2) Recording video under restriction of
disk space. (3) Watching multi-object video with adjusted quality of objects according
to importance of each object. Regarding (1), contents such as news and stock prices are
displayed on PC screen, and watched when the user is doing other jobs on another win-
dow. Users set window size according to their interests, and thus there would be various
quality requirements. Regarding (2), users may want to record received video in bitrate
according to importance of the video. In this case, quality requirement varies depend-
ing on user’s interest and the size of disk space. Regarding (3), multi-object video is
played back under constraints of network bandwidth. Users may want to watch impor-
tant objects in higher bitrate. Quality requirements of objects would vary depending on
importance of objects.

Thus, we can say that users’ quality requirements can widely be distributed.

4 Evaluation

In order to show usefulness of MTcast, we have conducted several experiments for
measuring (1) required computation power for transcoding (2) overhead of transcode
tree construction and (3) the user satisfaction degree on received quality.

4.1 Required Computation Power for Transcoding

In our method, since transcoding is processed on user nodes, the load of transcoding
should not influence the playback of video. So, we examined the load of transcoding
while playing back a video using a desktop PC, a laptop PC, and a PDA. In the exper-
iment, we measured maximum processing speed of transcoding (in fps) while playing
back a video and compared it with the actual playback speed of the video. If the maxi-
mum processing speed is sufficiently larger than the actual playback speed, it can be said
that the load of the transcoding doesn’t influence playback of the video. We measured
the maximum processing speed by changing the transcoding degree (i.e., the number of
simultaneous transcode processing) from 1 to 3. In the experiment, we usedmpeg2dec
0.4.0b as the decoder andffmpeg 0.4.9-pre1 as the encoder. The experimental
parameters and results are shown in Table 1. The specifications of the devices in Table 1
are as follows: desktop PC (CPU: Pentium4 2.4GHz, 256MB RAM, Linux2.6.10), lap-
top PC (CPU: Celeron 1GHz, 384MB RAM, Linux 2.4.29), and PDA (SHARP Zaurus
SL-C700, CPU: XScale PXA250 400MHz, 32MB RAM, Linux 2.4.28). The original
frame rate of all videos is 24 fps.



Table 1.Maximum processing speed while playing back a video

device original video transcoded video transcoding degree
picture sizebit rate (kbps)picture sizebit rate(kbps) 1 2 3

Desktop PC 640x480 3000 480x360 2000 35.6620.03 14.84
Desktop PC 480x360 2000 352x288 1500 61.6036.40 25.89
Laptop PC 352x288 1500 320x240 1000 49.9030.65 21.84

PDA 320x240 1000 208x176 384 10.12 6.04 4.33

Table 1 shows that common desktop PCs and laptop PCs have enough computation
power to simultaneously transcode one or more videos with 3000Kbps (640x480 pixels)
and with 1500 Kbps (352x288 pixels) in real-time, respectively.

In MTcast, each internal node needs computation power more than one transcoding
degree. Table 1 shows that this requirement is not hard to be achieved. However, PDA’s
maximum processing speed is 10.12 fps even if the transcoding degree is 1. It shows that
PDAs and smaller computing devices cannot be used as internal nodes of the transcode
tree.

4.2 Overhead of Tree Reconstruction

In our method, the transcode tree is reconstructed periodically and/or when a new video
segment starts. The overhead of the tree reconstruction consists of (i) aggregation of
quality requirements for the new video segment from (part of) user nodes, (ii) cal-
culation of the new transcode tree, and (iii) distribution of the new transcode tree to
representative nodes of all layers.

For the above (i), even when the number of nodes is 100,0002 and each node sends
a 50 Byte packet for quality requirement directly to the computation nodeuc, 5 MByte
information is sent to the nodeuc which computes the transcode tree. If we assume
that this information is sent in 10 seconds (it should be less than the period of the
tree reconstruction), the average transmission speed becomes 4 Mbps. Since only the
node with enough downstream bandwidth can be selected asuc, this would not be a
bandwidth bottleneck.

In order to investigate the impact of the above (ii) and (iii), we measured the size
and the computation time of the transcode tree with the number of nodes from 1,000 to
100,000. Here, we assumed thatn = 2 andk = 5, wheren andk are the fanout of each
internal node and the number of layer members, respectively. The experimental result
is shown in Table 2. According to Table 2, the computation time was within 2 seconds
even when the number of nodes is 100,000 (Pentium 4 2.4GHz with 256MB RAM on
Linux2.6.10). So, computation time would not be a bottleneck.

The size of the transcode tree was 30 Kbyte when the number of all nodes is 10,000.
The information of the tree is sent to representative nodes of all layers along the layer
tree. If we assume that this is sent in 10 seconds, each representative node needs 24Kbps
2 This number is actually much smaller since only the nodes which want to change their quality

requirements for the next video segment send the messages.



Table 2.Size and Computation Time of Transcode Tree

number of nodescomputation time (sec)size of tree (byte)
1000 0.016 3K

10000 0.140 30K
100000 1.497 300K

extra bandwidth. Even when the number of nodes is 100,000, the required bandwidth
would be 240Kbps. Also, the tree size can be further reduced with the general compres-
sion algorithm likegzip .

4.3 User Satisfaction

In this section, we compare MTcast with the layered multicast method in terms of the
user satisfaction degree for the quality requirements.

Similarly to [3], the satisfaction degree of useru (0 ≤ Su ≤ 1) is defined as follows.

Su = 1 − |u.q − u.q′|
u.q

(4)

Here,u.q representsu’s required quality andu.q′ represents the quality of the received
video. Whenu.q′ is closer tou.q, Su gets closer to 1.

The experiment has been conducted as follows: The physical network topology with
6000 nodes is generated with Inet3.0 [8] and 1000 nodes are selected as user nodes.
Links directly connected to those user nodes are regarded as LANs. Links attached to
LAN links are considered as MAN links, and other links are considered as WAN links.
We assume that there are the following four types of user nodes: (1) user nodes with cell
phone networks whose available downstream bandwidths are 100 to 500 Kbps; (2) user
nodes with wireless LAN (2 Mbps to 5 Mbps); and (3) user nodes with wired broadband
networks (10 Mbps to 20 Mbps). We assume that each user node has the same amount
of available upstream bandwidth as the downstream bandwidth.

Table 3. Configuration of Available Band-
width

100k to 500k2M to 5M 10M to 20M
case1 33% 33% 33%
case2 5% 33% 62%
case3 45% 10% 45%
case4 62% 33% 5%

Table 4. Relationship of u.ntranscode,
u.nlink, f

p.ntranscode p.nlink k f

pref. 1 2 4 2 1
pref. 2 1 3 3 1
pref. 3 1 3 6 2
pref. 4 1 3 9 3

We selected the quality requirement of each user node according to one of the fol-
lowing three distributions within the available bandwidth: (a) uniform distribution from
300 Kbps to 3 Mbps; (b) sum of two normal distributions with 300 Kbps average and
50Kbps standard deviation and with 3 Mbps average and 1 Mbps standard deviation.
On the other hand, the total sum of bandwidths of LAN links connected to each MAN
link was used as the bandwidth of the MAN link. 6 Gbps was used as bandwidths for
WAN links.



In the above simulation configuration, we measured the average user satisfaction
degree (1|U |

∑
u∈U Su, U is the set of all users). We changed the number of user nodes

from 1 to 1000 and measured the average satisfaction degree for the combination of the
above quality requirement distributions (a), (b) and four different types of populations
of user nodes shown in Table 3. The experimental results are shown in Fig. 3, Fig.
4. In the figures, X-axis and Y-axis represent the number of nodes and the average
satisfaction degree, respectively.
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Fig. 3. Average User Satisfaction by requirement (a)
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Fig. 4. Average User Satisfaction by requirement (b)

In Fig. 3 and Fig. 4 , we see that MTcast can achieve pretty high satisfaction degree
for various distribution of quality requirements from user nodes, when the number of
user nodes are more than 100. The satisfaction degree is lower in case4 than other cases.
This is because the percentage of user nodes with higher bandwidth is much smaller in
case 4. However, even in such a case, MTcast achieved more than 70% user satisfaction.

In order to measure variation of user satisfaction degree depending on the value
of k, we measured average user satisfaction degrees fork = 2, 3, 6 and 9 which are
derived when applying four different combinations ofu.ntrans(u.q) andu.nlink(u.q)
in Table 4. From Table 4, whenk = 2 or k = 3, the system can be recovered from one
node failure per layer, and whenk = 6 or k = 9, the system can be recovered from
two and three simultaneous node failures per layer, respectively (these are calculated by
equation (3). However, as the value ofk increases, the average user satisfaction degree
might decrease since the delivered quality is averaged amongk members of each layer.
The experimental result is shown in Fig. 5.

From Fig. 5, while the number of nodes is relatively small (i.e., less than 300), the
average user satisfaction degree decreases as the value ofk increases. However, as the
number of user nodes increases, the decrease gets smaller. From the result, while the
number of user nodes is small, we should keep the value ofk small in order to keep the
average user satisfaction degree high, and we should increase the value ofk gradually
to improve robustness against node failure as the number of users increases.

For comparison, we also measured the average user satisfaction degree when using
the layered multicast method. The average user satisfaction degree depends largely on
the proportion of bitrates among multiple layers. So, we used the following way for
allocating bitrates of layers: The average user satisfaction degree was considered as
the evaluation function, and the optimal allocation of encoding rates were calculated



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

k = 2
k = 3
k = 6
k = 9

A
ve

ra
ge

 s
at

is
fa

ct
io

n

Number of nodes

Fig. 5.User Satisfaction vs. Allowable Failures per Layer
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Fig. 6.Average User Satisfaction by Layered Multicast

for basic and extension layers using the Simulated Annealing method (the number of
repetition times were 10,000).

With this optimization technique, we measured the average user satisfaction de-
grees. The results are shown in Fig. 6. From Fig. 5 and Fig. 6, when the number of user
nodes is small (less than 200), and we usek = 6 or k = 9 with MTcast for two failure
recovery per layer, the layered multicast achieves higher satisfaction degree than MT-
cast. On the other hand, when the number of nodes is sufficient (more than 200), MTcast
achieves much higher satisfaction degree than the layered multicast with less than 10
layers (when the number of layers is higher than 10, the computational complexity may
exceed the power of an ordinary PC [3]).

5 Concluding Remarks

In this paper, we proposed a new video delivery method called MTcast to achieve ef-
ficient simultaneous video delivery to multiple heterogeneous users. In the proposed
method, the same video stream is transmitted from a video server to user nodes by



step-by-step transcoding at each intermediate node. The main contributions of MTcast
are the following: (1) quick failure recovery and new user’s quick reception of video
streams can be achieved owing to layers of user nodes, (2) the size and height of the
tree are kept small by periodical tree reconstruction, and (3) higher user satisfaction can
be achieved with reasonable resource consumption at user nodes.

The above (2) also allows users to play back video segments with various different
quality. When we use MTcast with our energy consumption control technique in [11],
users can increase playback quality for preferred video segments without shortening
playable time at portable devices within the battery amount.

In this paper, we only provided a centralized algorithm for constructing the transcode
tree, although it works for the scale of 100,000 nodes. As part of future work, we will
design a distributed algorithm for tree construction to improve scalability further.
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