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Abstract

In order to allow every user to extract aggregated com-
putational power from idle PCs in the Internet, we pro-
pose a distributed architecture to achieve a market based
resource sharing among users. The advantages of our pro-
posed architecture are the following: (i) aggregated re-
sources can be bought by one order, (ii) resource prices
are decided based on market principles, and (iii) the load
is balanced among multiple server nodes to make the archi-
tecture scalable w.r.t. the number of users. Through sim-
ulations, we have confirmed that the proposed method can
mitigate the load at each server node to a great extent.

1 Introduction

The progress of high speed networks and high perfor-
mance PCs in recent years has made it possible to realize
high performance computing (HPC) such as Clusters and
Grid computing at low cost. Over the past years, many
projects like SETI@home [1] and GIMPS [2] are being
conducted in order to achieve more than supercomputer
power. These projects aggregate computation power from
a large number of idle PCs connected to the Internet and
use the aggregated power for large scale scientific compu-
tations. These systems can greatly reduce the management
cost since each component of the system (i.e., PC) is main-
tained by the PC user. However, in order to make the system
successful, an appropriate incentive for resource providers
(PC users) such as high public interest, is required. On the
other hand, NTT DATA and IBM began to provide a ser-
vice calledcell computing[3] where the required computa-
tion power is aggregated from PCs connected to the Internet
and provided to business users at a cheaper cost than leas-
ing a super computer. In this system, incentives for PC users
are provided by giving them rewards such as electronic cur-
rency.

With the existing distributed computing systems, how-
ever, it is still difficult for each individual user to freely ex-
tract the required power for his/her personal objective. For

example, a user may want to borrow relatively large compu-
tation power to encode a movie recorded with his/her cam-
coder into the MPEG-4 format. In such a case, it would
be useful if a user could find idle PCs connected to the In-
ternet and use their resources temporarily by paying some-
thing like virtual currency. The same user should be able
to provide his/her resources to earn virtual currency while
his/her PC is in the idle state at various times. Several ideas
have been proposed to achieve fair resource sharing among
users using the market mechanism [4, 5, 6, 7]. Here, the
appropriate price of each resource is automatically decided
depending on the balance between demand and supply.

When using the market mechanism, each user should be
able to find the required amount of resources at as cheap a
price as possible. Therefore, the existing approaches such
as [4, 5, 6, 7] utilize amarket broker(or market server)
placed in a network node, which mediates between resource
sellers and buyers. However, there are the following issues
to make the market broker available for everyone. The first
one is the scalability issue. When the number of users (or-
ders) increases, the load of the broker also increases if it
is implemented in a centralized server. So, we need a dis-
tributed implementation for the market broker. The second
issue is the way of matching orders. The simplest way is
to match one sell-order to each buy-order or vice versa.
However, if a user wants to use relatively large computa-
tion power, it should be desirable to match a multiple set of
sell-orders to one buy-order in order to increase availability
of resources.

In this paper, we propose a distributed architecture for
the market broker. The proposed architecture has the fol-
lowing advantages: (i) the load for processing orders is dis-
tributed among multiple server nodes, (ii) the architecture is
fully distributed and needs no centralized control, and (iii)
flexible matching such that one buy-order matches multiple
sell-orders can be treated.

The basic idea of the proposed architecture consists of
dividing the set of orders into multiple subsets based on the
specified range of resources (e.g., the range of CPU power:
1000-2000MIPS) and allocating a server node to manage



the orders falling into each range. Since each order may
cover multiple ranges, if we let each server node find the
pair of matching orders only in the subset, the result may
differ from the case with a single centralized server. So,
for each order covering multiple ranges, we replicate it and
have the corresponding server nodes keep its replicas. We
have developed a protocol for efficiently propagating repli-
cas to the server nodes.

The rest of the paper is organized as follows. In Sect. 2,
we briefly survey the existing techniques on market-based
approaches for resource sharing. In Sect. 3, we explain
about our framework for trading resources among users and
how we integrate it into Grid computing systems. A dis-
tributed architecture for achieving the market broker is pro-
posed in Sect. 4. We present the experimental results in
Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

Several techniques on market based resource sharing
have been proposed so far.

In [8], a platform for mobile agents called D’Agents is
proposed. Mobile agents execute their tasks on network
nodes where they can move around. If the destination nodes
belong to the differently administrated organizations, a con-
trol is required for deciding whether mobile agents can be
accepted or not at those nodes. The decision can be made
based on selling prices of resources at those nodes.

In [9, 10], resource sharing method for mobile ad-hoc
networks is proposed. In a mobile ad-hoc network, since
each node could be a router for receiving and forwarding
other users’ packets, incentives for router nodes are re-
quired. These methods provide incentive-based resource
sharing techniques where packet forwarding services at
router nodes are traded among service users at auctions.

The above existing methods focus mainly on achieving
self-stabilization for restraining greedy users by keeping a
balance of allocated resources among users. Our proposed
method is different from these methods since our method
allows users to trade any amount and any combinations of
resources in PC Grid systems for their personal purposes
using the market mechanism.

Some resource sharing methods have been proposed for
PC Grid Systems such as Popcorn [4], Java Market[5] and
JaWS[6]. In these methods, buyers of resources describe
their applications in Java language, and register them to a
node called themarket server. On the other hand, sellers of
resources execute these applications as Java applets by fol-
lowing URLs registered on the market server. The market
server also conducts operations for uploading and down-
loading the application programs as well as for matching
and retaining buy-orders and sell-orders. On the other hand,
in [7], a scheduling system named Nimrod-G is proposed to
solve a problem with time constraints in a given budget.

The above existing methods implement the market server
as a simple client-server system. There are no detailed con-
sideration to improve scalability of the market server or to
assign user nodes for the market server autonomously. Our
approach is different from the existing methods in the sense
that we provide an autonomous and distributed architecture
for achieving the market server.
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Figure 1. Framework for Market Based Re-
source Sharing

Distributed lookup services in P2P networks such as
CAN[11], Chord[12] and Meghdoot[13] have been pro-
posed so far. It may be considered to use these lookup ser-
vices to search complementary orders on distributed market
servers. On market servers, however, the best complemen-
tary order has to be found between a given value range. This
kind of search is calledrange search. For example, if a
buyer ordered a resource with more than 1000 MIPS, all of
sell-orders with more than 1000 MIPS CPU power could be
subjects of matching, and among them the lookup service
has to find a sell-order with the lowest price. Since CAN
and Chord do not support range search, it would be difficult
to apply them to finding the best complementary order in a
market based resource trading system.

On the other hand, Meghdoot supports range search.
However, it does not support a selection mechanism, for ex-
ample, to find a complementary sell-order with the lowest
price. So, a client has to receive all of search results to find
the best one. This may lead to poor scalability, since data
size of search results increases as the number of sell orders
retained in market servers increases.

Our proposed method is different from these existing
methods in terms of the efficiency to find the best com-
plementary order in distributed market servers, which is
achieved by replicating the orders with the lowest (highest)
price in multiple market servers in prior to other orders.

3 Framework for Market-based Resource
Sharing

In this section, we describe outline of our resource shar-
ing framework. We show the structure of our framework in
Fig. 1. The framework consists of multiple sellers and buy-
ers and a market broker consisting of multiple server nodes.

3.1 Components of our framework
Resource seller

Each seller receives a revenue by offering his/her compu-
tational resource to a buyer. Here, we treat only the follow-
ing four types of resources: CPU power (in MIPS), memory
amount (in MB), disk amount (in GB) and network band-
width (in Kbps). Each seller represents his/her resource by



a quadrupler = (r1, r2, r3, r4), wherer1, r2, r3 and r4

denote CPU power, memory amount, disk amount and net-
work bandwidth, respectively. He/she also specifies the sell-
ing priceSellPrice of r, and the time period defined by be-
ginning timeSellStart and ending timeSellEnd, during
which r is available. Each sell-orderos can be represented
by os = (r, SellPrice, SellStart, SellEnd).

Resource buyer
Each buyer pays a fee for using computational resources

offered by a seller (a set of sellers) to execute his/her task(s).
Each task is represented as a combination of the follow-
ing values: a set of computational resources (denoted by
p) required to execute the task, the time duration (denoted
by ExecDuration) for completing task execution, and the
deadline (denoted byDeadline) of the task execution.

The set of required computational resourcesp is speci-
fied by a quadruple(p1, p2, p3, p4) similarly to the case of
sellers. For example, a task withp = (2000, 64, 0.3, 500),
ExecDuration = 3600s, andDeadline = 9:00PM on Dec-
01-2004 requires resources more than 2000MIPS of CPU
power, 64MB of memory space, 0.3GB of disk space and
500kbps of network bandwidth, takes 3600 seconds to com-
plete its execution and must be completed until 9:00PM on
Dec-01-2004. He/she also specifies a budgetBuyPrice for
the task and program/data code (or a pointer to the code)
Code of the task. Each buy-orderob can be represented by
ob = (p,BuyPrice, ExecDuration,Deadline, Code).

When a buyer wants to use a certain amount of resources
from sellers, first he/she registers a buy-orderob to the mar-
ket broker.

Market broker
The market broker receives orders from multiple sellers

and buyers, and finds the pair of complementary orders sat-
isfying the conditions defined in Sect. 3.2. The matching
of orders is conducted in the same way as the stock market
at NYSE. That is, when the market broker receives a new
order, it searches the best (e.g., the cheapest sell-order for
a new buy-order) complementary order of all orders satis-
fying the conditions which are retained in its repository. If
the broker finds the appropriate complementary order for
the new order, it sends the matching result to the seller and
buyer. If there are no complementary orders, the new order
is retained in the repository of the broker.

3.2 Matching Condition

For each buy-orderob and each sell-orderos, if the fol-
lowing four conditions hold, we say thatob and os can
matchto each other.

C1 ∀i ∈ {1, 2, 3, 4} (ob.pi ≤ os.ri)
C2 ob.ExecDuration ≤ os.SellEnd − os.SellStart

C3 ob.Deadline ≤ os.SellEnd

C4 os.SellPrice ≤ ob.BuyPrice

LetS(m) andB(m) denote the set of sell-orders and the
set of buy-orders which a market brokerm retains, respec-
tively. We introduce the following two additional conditions
to select the best order if multiple orders satisfy conditions
C1-C4.

C5 (selection policy for buy-order) Whenm receives a
new buy-orderob and there are multiple sell-orders in
S(m) which can match toob, one with the lowest sell
price is selected.

C6 (selection policy for sell-order) Similarly, whenm re-
ceives a new sell-orderos and there are multiple buy-
orders inB(m) which can match toos, one with the
highest buy price is selected.

When the market broker receives a new order, it checks
whether the order satisfies conditions C1-C4 or not. If there
is no complementary order satisfying the conditions, the or-
der is retained inS(m) or B(m). Otherwise, it selects one
order based on condition C5 or C6.

One-to-many matching condition
When a buyer wants to execute a task requiring rela-

tively large computation resources, it may be difficult to find
a sell-order which satisfies conditions C1-C4 for the buy-
order. If such a task can be divided into subtasks and those
subtasks can be executed on different PCs, the availability
of resources would be improved to a great extent. So, we
extend our method to find the appropriate set of sell-orders
whose sum of resources satisfies the conditions specified in
a buy-order.

Let Ob denote a buy-order includingn sub
tasks (here,n ≥ 2). We define Ob by Ob.p =
{(ob

1.p1, o
b
1.p2, ..., o

b
1.p4), ..., (ob

n.p1, o
b
n.p2, ..., o

b
n.p4)},

Ob.ExecDuration, Ob.Deadline, Ob.BuyPrice, and
Ob.Code = {code1, ..., coden}.

Here, we assume that there aren tasks wherei-th task re-
quires resources(ob

i .p1, o
b
i .p2, o

b
i .p3, o

b
i .p4) to execute pro-

gram/data codecodei, all tasks have the execution dura-
tions and deadlines smaller thanOb.ExecDuration and
Ob.Deadline, respectively and a budgetOb.BuyPrice is
used to buy resources for all tasks.

For each buy-orderOb, if there exists a set of sell-orders
S = {os

1, ..., o
s
n} satisfying the following four conditions,

we say thatOb andS canmatchto each other.

D1 ∀i ∈ {1, 2, ..., n},∀j ∈ {1, 2, ..., 4} (ob
i .pj ≤ os

i .rj)
D2 ∀i ∈ {1, 2, ..., n} Ob.ExecDuration ≤

os
i .SellEnd − os

i .SellStart

D3 ∀i ∈ {1, 2, ..., n} Ob.Deadline ≤ os
i .SellEnd

D4 Ob.BuyPrice ≥
∑n

i=1 os
i .SellPrice

If there is no set of sell-orders satisfying conditions D1-
D4 for Ob, the market broker retainsOb until such a set
becomes available.

3.3 Task execution and payment
When the broker matched a new order to the appropri-

ate complementary order, program code and data for the
buyer’s task are transferred to the seller’s PC to be executed.

When transferring code, the following security problems
may occur: (i) the buyer may send malware to the seller’s
PC, (ii) the seller may steal important information by ob-
serving task execution or may return forged computation re-
sults to the buyer. To prevent the above problem (i), we can
introduce the sandbox mechanism used by java applets. In



order to prevent the problem (ii), we can use voting or spot-
checking techniques proposed in [14]. Also, some tech-
niques in Trusted Computing [15] can be used to improve
security.

When execution of task completes and results are sent to
the buyer, the buyer must pay a fee to the seller. This can
also safely be achieved with a tamper resistant execution
environment as described in [9].

3.4 Outline of Our Distributed Architecture
As the number of orders from buyers and sellers in-

creases, load of the market broker increases. So, we pro-
pose a distributed architecture for making the market broker
scalable using the following policies:

(1) use multiple nodes (calledserver nodes, hereafter) to
implement the market broker.

(2) choose server nodes from sellers autonomously.
(3) when some server nodes are overloaded, new server

nodes are dynamically allocated and orders are dis-
tributed among these server nodes in order to increase
scalability.

The above (2) can be achieved by letting users of the
matched orders pay a commission fee. The fee is used to
buy resources for managing the operations of the market
broker from resource sellers. Therefore, every user has an
incentive to be a server node.

The above (3) can be achieved by dynamically dividing
the order space into multiple sub spaces and by assigning
server nodes to sub spaces one-to-one so that the number
of orders in each sub space is always less than a specified
threshold.

In the following sections, we focus especially on the
above (1). We solve the problem using replicas of or-
ders and a protocol to efficiently propagate replicas among
server nodes.

4 Distributed Market Broker Architecture
In this section, first we explain the algorithm for the case

that one buying order matches one selling order. Then, we
present extension for one-to-many matching in Sect. 4.6.

4.1 Representation of Orders
For each buy-orderob and sell-orderos, conditions C1-

C3 in Sect. 3.2 can be represented as follows.

∀i ∈ {1, ..., 6} (ob.vi ≤ os.vi) (1)

where∀i ∈ {1, ..., 4} ob.vi = ob.pi, os.vi = os.ri, ob.v5 =
ob.ExecDuration, os.v5 = os.SellEnd − os.SellStart,
ob.v6 = ob.Deadline, andos.v6 = os.SellEnd. In expres-
sion 1, the range ofi is in general{1, ..., d}, whered is the
number of resources. Hereafter, we denote(ob.v1, ..., o

b.vd)
and(os.v1, ..., o

s.vd) by ob.~v andos.~v, respectively.
For each value ofi, we assume that the possible value

range ofob.vi andos.vi is decided in advance. We denote
the range as[mini : maxi]. Each ordero can be repre-
sented as a point in ad dimensional spaceR = [min1 :
max1] × . . . × [mind : maxd], sinceo.~v ∈ R. We callR
thewhole region. Hereafter, we explain the case withd = 2.

In our algorithm, matching a new buy-order to an exist-
ing sell-order retained by the market broker is symmetric to
matching a new sell-order to an existing buy-order. Below,
we explain our algorithm using the former case.

4.2 Dividing Order Space into Subregions
Let M be the number of server nodes in the set of server

nodes{m1,m2, ...,mM}. In our method, we divide the
whole regionR into M subregions. One server node is as-
signed to each subregion. LetRi be the subregion for which
the server nodemi is responsible (Fig. 2).

When a user registers a new ordero in the market broker,
it sendso to one of server nodes, say,ms. We suppose that
each user knows at least one server node in advance. Then,
ms forwardso to an appropriate server nodemt such that
o.~v ∈ Rt. This forwarding can be achieved with an existing
distributed lookup service of CAN [11]. When each server
nodemi received a new ordero ando is not in the its sub-
region[mini,maxi], mi finds the neighbor nodemj so that
the central coordinate of sub-region[minj ,maxj ] is closest
to o.~v in terms of Euclid distance among all neighbor nodes,
and forwardso to mj . In order to implement the above
lookup mechanism, we let each server nodemi keep regions
and IP addresses of neighbor nodes as well as its own region
in R. Transmission of an order fromms to mt requires
O(dM1/d) hops in average [11].

When server nodemt receives buy-orderob such that
ob.~v ∈ Rt, it searches a sell-order which satisfies conditions
C1-C4 in Sect. 3.2 forob. If there is no sell-orders satisfying
the conditions forob, it appendsob to the set of waiting buy-
ordersB(mt) as described in Sect. 3. Similarly, whenmt

receives sell-orderos and there is no buy-orders satisfying
the conditions foros, it appendsos to the set of waiting
sell-ordersS(mt).

With this approach, if orders are received byM server
nodes uniformly, we can expect that the load of each server
node is reduced to1/M compared with the case with a sin-
gle server node. However, if a buy-orderob and a sell-order
os are received by different server nodes, respectively,ob

and os cannot be matched. For example, in the case of
ob.~v ∈ R7 andos.~v ∈ R6, ob andos are received by server
nodesm7 andm6, respectively. Thus,ob andos cannot be
matched even though they satisfy conditions C1-C4. We
cope with this issue by replicating some orders in multiple
server nodes.

4.3 Order Replication
We explain our order replication algorithm using an ex-

ample. First, let us suppose that only one sell-orderos
1 is

registered in a server nodem7. Thevalid regionof a sell-
orderos is defined asR(os) = [min1 : os.v1] × [min2 :
os.v2] × ... × [mind : os.vd]. os

1’s valid region is depicted
as a rectangle in Fig. 3. In Fig. 3 to 6, each number in the
parenthesis (e.g.,os

1(40)) represents the selling price of the
corresponding order.

Now, suppose that a new sell-orderos
2 has arrived at the

server nodem6. If os
2’s valid region spreads over the set

of server nodes{m4,m5,m7, m8,m9} as shown in Fig. 4.
We make these server nodes hold replicas of the orderos

2.
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Next, we suppose that a new sell-orderos
3 has arrived at

the server nodem2 and thatos
3’s valid region spreads over

the set of server nodes{m1,m4, m5,m7, m8} as shown in
Fig. 5.

In this case, however, server nodesm7 andm8 do not
need to hold replicas ofos

3. if a buy-order with price
more than 80 is received bym7 or m8, the order first
matches to orderos

2 sinceos
2.SellPrice = 80 is lower than

os
3.SellPrice = 90. Thus, we make the set of server nodes
{m1,m4, m5} hold replicas of the orderos

3.
The details of our replication protocol is explained in

Sect. 4.5.

4.4 Order Matching and Deletion

Let us suppose that a new buy-orderob
1 has been received

by server nodem6 and thatob
1 has matched toos

2. Then,
we removeos

2 from m6. Also, we remove orderos
2’s repli-

cas from the set of server nodes{m4,m5,m7,m8,m9} as
shown in Fig. 6. After deletion of the orderos

2, orderos
3 be-

comes ready to match to buy-orders arriving at server nodes
m7 andm8. So, we make these server nodes hold replicas
of os

3.
Let us suppose that a new buy-orderob

2 has arrived at
server nodem8 while the replicas of orderos

2 are being
deleted after matching ofos

2 andob
1. In that case,ob

2 may
match the replica ofos

2 in server nodem8, althoughos
2 has

already matched toob
1 and been removed fromm6. In order

to keep consistency, when a server node matches an order to
a replica, we let the server node check if the original order
exists or not. To do so, we attach the pointer to the original
order in each replica.

4.5 Protocol for Order Replication and Deletion
In our protocol, we use messagesrepl anddel for repli-

cation and deletion of an order, respectively.

Replication message
When a server nodemi receives a new sell-orderos, it

calculates thesub valid regionon eachdownstream adja-
cent server nodesof the orderos. Here, sub valid region
on mi of os is defined asR(os) ∩ Ri. And, the down-
stream adjacent server nodes ofmi are server nodes which

own the neighbor regions ofmi towards the coordinate
(min1, ...,mind) in R. When the sub valid region ofos

j

andos
k overlapson Ri andos

k.SellPrice < os
j .SellPrice

holds, overlapped sub valid region isremovedfrom the sub
valid region of os

j . That meansos
j is not propagated to

those overlapped sub regions any more (e.g., in Fig. 5, sub
valid region ofos

3 is removed onm7 andm8 by os
2). The

server nodemi checks whether the sub valid region ofos

is removed on each downstream adjacent server by the sell-
orders retained bymi, and if unremoved sub valid region
found, mi sends messagerepl(os,mi) to the downstream
adjacent server node. Each replication message contains
the content ofos and the pointer to its original server node.
When each server node receives replication messages for
os, it checks whether the sub valid regions ofos are removed
on each downstream adjacent server node, and if unremoved
sub valid region found, replication messages are forwarded
to the downstream adjacent server nodes similarly.

For example, when a new sell-orderos
2 has arrived at

server nodem6 in Fig. 7, replication messages foros
2 are

propagated as shown in Fig. 7. First, server nodem6 sends
replication messagerepl(os

2,m6) to server nodesm5 and
m9. Next, these servers forward the replication messages
to server nodesm4 andm8. Finally, these server nodes for-
ward the messages to server nodem7.

Deletion message
First, let us suppose that a new buy-orderob satisfies the

conditions with a replica of orderos at server nodemi. As
we explained in Sect. 4.4, before each server node matches
an order to the replica, the server node checks if the original
order exists or not. In this case, only if the original order of
os exists,ob can match to its replica at server nodemi, and
consequently, the original and the replica ofos are deleted.

Here, however, some replicas ofos may be left at
other server nodes. So, when original orderos is deleted,
we let its server node (say,mj) send deletion messages
del(os,mj) to its downstream adjacent server nodes sim-
ilarly to the case of replication messages.

When each server nodemk receives a deletion message
for replicas of an orderos, it finds an sell-order̂os with the
lowest price in the setS(mk) − {os} and sends replication
messages of̂os to downstream adjacent server nodes.
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Introduction of time slot
In the above protocol, when a large number of orders are

arrived or matched to complementary orders at one server
node in a short time period, the server node may be over-
loaded due to operations for transmitting replication mes-
sages. In order to mitigate this problem, we introduce a
constant time slotT to aggregate replication and deletion
messages generated/received during every time intervalT
into a single message. Consequently, only one message is
sent to each adjacent server per time slot.

When using a time slot, messages are transmitted
as shown in Fig. 7. Each server node receives or-
ders/replication messages during time slotT . In the next
time slot, replication messages of the orders are sent to
downstream adjacent servers.

However, using a large time slot may introduce large
time lag of arrival times at server nodes far from the node
which received the original order. That causes different re-
sults from the case using a single node for the market bro-
ker. However, we think that the difference is not so seri-
ous. In general, the selling/buying price increases as the
selling/buying amount of resources increases. So, most of
orders would match on the original server node or on server
nodes near from the original.

4.6 One-to-many Order Matching

We suppose that there isn sub-tasks in a buy-orderOb.
Let {ob

1, ..., o
b
n} denote the set of buy-orders for the sub-

tasks. We call eachob
i sub-buy-order. As we defined in

Sect. 3.2, only the total budget is specified inOb to buy
resources forn sub-tasks. So, we registern sub-buy-orders
in the market broker as independent orders, leaving their
BuyPrice fieldsundefined.

When a server nodemj such thatob.~v ∈ Rj receives a
new orderob

i such thatob
i .BuyPrice =undefined, mj finds

a sell-orderos
i with the lowest price which satisfies expres-

sion 1, andtentativelymatches toob
i . Here, the tentative

match means that the server node just retains the state of the
matching until receiving theconfirmationmessage without
removing the order as a result of this matching. In this case,
mj sends the buyer thetentative matchmessage with the
value ofos

i .SellPrice. If the buyer receives thetentative

matchmessages from all server nodes where the sub-buy-
orders were sent andOb.BuyPrice ≥

∑n
i=1 os

i .SellPrice
holds, he/she sends theconfirmationmassage back to those
server nodes. If the buyer’s budget is less than the sum of
the selling prices, the fact is shown to the buyer to prompt
him/her to raise the budget.

When each server node receives theconfirmationmes-
sage for a tentative match which it retains, it checks whether
the original order still exists or not, similarly to the one-to-
one matching case. If the original order still exists, the or-
der is confirmed and theack message is sent to the buyer.
Otherwise, the server node finds another sell-order which
tentatively matches to the sub-buy-order, and sends atenta-
tive matchmessage to the buyer. Here, note that the order
which has been confirmed cannot be tentatively matched to
other orders.

If the buyer has received theack messages from all the
server nodes,Ob finally matches to the set of the sell-orders,
and the buyer sendscommitmessage to the server nodes.
When each server node receives thecommit message, it
executes the similar operations to the one-to-one matching
case. If the buyer receives thetentative matchmessages in-
stead ofack messages from some server nodes, it tries to
confirm them again.

If the buyer does not receive theack messages from all
the server nodes for a specified time period, it sends the
cancelmessage to them to make the confirmed orders free.
In this case, the buyer tries to register the orderOb from the
scratch after a certain time period.

In the above algorithm, if multiple buyers register buy-
orders with more than one sub-tasks and try to confirm their
tentative matches simultaneously, there will be a conflict be-
tween confirmations for competing some common orders.
For example, suppose that user1 and user2 registered buy-
ordersOb

1 andOb
2 and that they have tentatively matched to

the sets of sell-orders{os
1, o

s
3, o

s
4} and{os

2, o
s
3, o

s
4}, respec-

tively. Then, suppose that user1 and user2 sent theconfir-
mationmessages at the same time and that the correspond-
ing server nodes received the confirmation foros

3 from user1
earlier than user2 and the confirmationos

4 from user2 earlier
than user1. In this case, neither user1 nor user2 can receive
theackmessages from all the server nodes.

To avoid this problem, we adopted a policy that each



buyer confirms tentative matches sequentially (i.e., it sends
the confirmation message to the next server node after re-
ceiving the ack message from the previous one) in increas-
ing order of server nodes’ IP addresses.

5 Experimental Results
We conducted simulations on a PC in order to evaluate

to what extent our distributed architecture can mitigate each
server load. We measured the average number of messages
processed by each server by changing the number of server
nodes from 1 to 625.

The messages received and forwarded by server nodes
consist of the following: (1) buy-orders and sell-orders sent
from users, (2) replication messages for orders and (3) dele-
tion messages for orders and replicas. In the simulation,
30000 orders (here, each order could be a buy-order or a
sell-order at 1/2 probability) were sent to server nodes. The
number of resource types was 2, and the amount to sell or
buy each resource was given by uniform random values be-
tween 0 and 100. We used the same size for all server nodes’
responsible sub-regions, and decided the message delay be-
tween server nodes at random between 10 to 160 ms. Sell-
ing price (buying price) was determined at random accord-
ing to a Gaussian distribution whose mean and standard de-
viation are(v1 + v2) and 30, respectively. Here,vi denotes
the amount ofi-th resource to sell or buy.

We generated orders according to Poisson Arrival so that
they arrive at server nodes every 10ms on average. The time
slot was set to 1000ms. The experimental results are shown
in Fig. 8. Fig. 8 also shows the average number of messages
at each server node, and the maximum and minimum num-
bers of messages per one server node of all server nodes.

Fig. 8 shows that the number of messages processed by
each server node can be reduced significantly by increasing
the number of server nodes. We can see that the load is
balanced among server nodes uniformly, since the deviation
between the maximum and minimum numbers of messages
and the average number is not so large in Fig. 8,

Next, we investigated the impact by introducing message
aggregation in a time slot. We measured average number of
replication and deletion messages received per second by
each server node by changing length of a time slot from
0 to 10000ms. We used the same parameter values as the
previous experiment. We show the result in Fig. 9.

Fig. 9 shows that we can reduce the number of control
messages processed at each server node per second from
0.65 to 0.45 by increasing the time slot up to 10sec.

Next, we investigated the difference of matching results
between the case with a single server and the case with mul-
tiple server nodes. In this experiment, we defined the user’s
satisfaction degreeS as follows, and we compared the dif-
ference in the value ofS.

According to conditions C5 and C6 in Sect. 3.2, when
a buyer (a seller) sends an order to the market broker, it is
desirable for the buyer (the seller) to match to a sell-order
with lower price (a buy-order with higher price). Let us de-
fine D = o1.buyPrice − o2.sellPrice if o1 is a buy-order
or D = o2.buyPrice − o1.sellPrice if o1 is a sell-order.
If we use a single server node for the market broker, the
complementary order which maximizes the value ofD is
always selected to match too1. On the other hand, if we

use our distributed architecture, the value ofD is not al-
ways maximized since there is a propagation delay of orders
among server nodes. Let us define the satisfaction degree of
each matching asS = DL/DG, whereDG is the maxi-
mum value ofD when a single server node is used, and
DL is the value ofD when our architecture is used. Here,
0 ≤ DL ≤ DG. We suppose thatS = 1 whenDG = 0. We
measured average values ofS for both cases, changing the
number of server nodes between 1 and 625 and a time slot
from 0 to 10000ms. We used the same parameter values as
previous experiments. The result is shown in Fig. 10.

Fig. 10 shows that our architecture achieves almost the
same satisfaction degrees (more than 0.95) as the single
server node case for any number of server nodes. We see
that the satisfaction degrees decrease when increasing the
time slot interval. This is caused by the propagation delay
of replicas among server nodes. We can improve the perfor-
mance by propagating top-n replicas among server nodes,
wheren is the number of orders to be selected for the repli-
cation.

We also conducted the following experiment to evalu-
ate efficiency of one-to-many order matching method de-
scribed in Sect. 4.6. We measured probabilities in which
all buy-orders are matched to sell-orders under the follow-
ing two conditions. In the first condition,n buy-orders are
registered to the market servers as sub-buy-orders using the
method described in Sect. 4.6. In this case, the buyer’s
budget is the sum of allBuyPrice of n buy-orders (buying
price of each buy-order was determined by same settings
as the above experiments) and matching fails if sum of all
SellPrice of complementary sell-orders exceeds buyer’s
budget or the buyer does not receive theack messages
from all the server nodes. In the second condition (sim-
ple method),n buy-orders (buying price was determined by
the same settings of the first condition) are simply regis-
tered to the server nodes as independent orders. In this case,
matching fails if there is a buy-order which is not matched
complementary sell-order. We generated 15000 sell-orders,
13500 buy-orders which do not include sub-buy-orders, and
1500 buy-orders including sub-buy-orders. The probability
distribution of the number of sub-buy-orders is exponential
distribution whose average value is 10. Length of time slot
was set to 1000ms. The number of server nodes is changed
between 1 to 625. The results are shown on Fig. 11.

Fig. 11 shows that our method achieves higher matching
probability than simple method regardless of the number of
server nodes.

6 Conclusion

In this paper, we proposed a distributed architecture for
a market broker which allows users to trade their resources
based on the market mechanism. With the proposed archi-
tecture, each user can buy/sell a resource from/to the other
user and also buy a larger amount of resource from multiple
users by one order.

As we saw in Sect. 5, we confirmed that the proposed
architecture is extremely scalable to the number of orders
when using one-to-one matching for orders, and it greatly
increases the availability of resources using the proposed
one-to-many matching mechanism. Since we currently use
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fixed ranges for subregions, a server node could be over-
loaded temporarily by receiving a lot of orders in a short
time period. If such overloaded situation lasts for a while,
the subregion should dynamically be divided to multiple re-
gions recursively. Implementation of such a dynamic divi-
sion mechanism is part of future work.
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