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Abstract example, a user may want to borrow relatively large compu-
tation power to encode a movie recorded with his/her cam-
In order to allow every user to extract aggregated com- coder into the MPEG-4 format. In such a case, it would
putational power from idle PCs in the Internet, we pro- be useful if a user could find idle PCs connected to the In-
pose a distributed architecture to achieve a market basedternet and use their resources temporarily by paying some-
resource sharing among users. The advantages of our pro-thing like virtual currency. The same user should be able
posed architecture are the following: (i) aggregated re- to provide his/her resources to earn virtual currency while
sources can be bought by one Order, (||) resource prices his/her PC is in the idle Stat_e at Valj|OUS times. SeV_eral ideas
are decided based on market principles, and (iii) the load have been proposed to achieve fair resource sharing among
is balanced among multiple server nodes to make the archi-Users using the market mechanism [4, 5, 6, 7]. Here, the
tecture scalable w.rt. the number of users. Through sim- @ppropriate price of each resource is automatically decided
ulations, we have confirmed that the proposed method candepending on the balance between demand and supply.
mitigate the load at each server node to a great extent. When using the market mechanism, each user should be
able to find the required amount of resources at as cheap a
: price as possible. Therefore, the existing approaches such
1 Introduction as [4, 5, 6, 7] utilize amarket broker(or market server
The progress of high speed networks and high perfor_placed in a network node, which mediates between resource
mance PCs in recent years has made it possible to realizsellers and buyers. However, t_here are the following issues
Grid computing at low cost. Over the past years, many € is the scalability issue. When the number of users (or-
projects like SETI@home [1] and GIMPS [2] are being ders) increases, the load of the broker also increases if it
conducted in order to achieve more than supercomputerS implemented in a centralized server. So, we need a dis-
power. These projects aggregate computation power fromtributed implementation for the market broker. The second
a large number of idle PCs connected to the Internet andissue is the way of matching orders. The simplest way is
use the aggregated power for large scale scientific compui0 match one sell-order to each buy-order or vice versa.
tations. These systems can greatly reduce the managemefowever, if a user wants to use relatively large computa-
cost since each component of the system (i.e., PC) is main{ion power, it should be desirable to match a multiple set of
tained by the PC user. However, in order to make the SyStems:ell—orders to one buy-order in order to increase availability
successful, an appropriate incentive for resource providers2f resources.
(PC users) such as high public interest, is required. On the In this paper, we propose a distributed architecture for
other hand, NTT DATA and IBM began to provide a ser- the market broker. The proposed architecture has the fol-
vice calledcell computingB] where the required computa- lowing advantages: (i) the load for processing orders is dis-
tion power is aggregated from PCs connected to the Internetributed among multiple server nodes, (i) the architecture is
and provided to business users at a cheaper cost than leadully distributed and needs no centralized control, and (jii)
ing a super computer. In this system, incentives for PC usersflexible matching such that one buy-order matches multiple
are provided by giving them rewards such as electronic cur-sell-orders can be treated.
rency. The basic idea of the proposed architecture consists of
With the existing distributed computing systems, how- dividing the set of orders into multiple subsets based on the
ever, it is still difficult for each individual user to freely ex- specified range of resources (e.g., the range of CPU power:
tract the required power for his/her personal objective. For 1000-2000MIPS) and allocating a server node to manage



the orders falling into each range. Since each order may Market broker 2) search orders
cover multiple ranges, if we let each server node find the sorver sorver to match
pair of matching orders only in the subset, the result may

differ from the case with a single centralized server. So, node 1 ode k
for each order covering multiple ranges, we replicate it and
have the corresponding server nodes keep its replicas. We ) ;5j5ad sell 1) upload buy
have developed a protocol for efficiently propagating repli- order 3) return 3) return order
cas to the server nodes. search result search result
The rest of the paper is organized as follows. In Sect. 2, 4) send task
we briefly survey the existing techniques on market-based |seller1|- - -|sellern| =™ |buyer 1| - -|buyerm
approaches for resource sharing. In Sect. 3, we explain 6) return result
about our framework for trading resources among users and ~_ U
how we integrate it into Grid computing systems. A dis- 7) payment
tributed architecture for achieving the market broker is pro- 5) task execution

posed in Sect. 4. We present the experimental results in

Sect. 5. Finally, we conclude the paper in Sect. 6. Figure 1. Framework for Market Based Re-

2  Related Work source Sharing
Several techniques on market based resource sharing Distributed lookup services in P2P networks such as
have been proposed so far. CANJ[11], Chord[12] and Meghdoot[13] have been pro-

In [8], a platform for mobile agents called D’Agents is posed so far. It may be considered to use these lookup ser-
proposed. Mobile agents execute their tasks on networkvices to search complementary orders on distributed market
nodes where they can move around. If the destination nodeservers. On market servers, however, the best complemen-
belong to the differently administrated organizations, a con- tary order has to be found between a given value range. This
trol is required for deciding whether mobile agents can be kind of search is calledange search For example, if a
accepted or not at those nodes. The decision can be madbuyer ordered a resource with more than 1000 MIPS, all of
based on selling prices of resources at those nodes. sell-orders with more than 1000 MIPS CPU power could be

In [9, 10], resource sharing method for mobile ad-hoc subjects of matching, and among them the lookup service
networks is proposed. In a mobile ad-hoc network, since has to find a sell-order with the lowest price. Since _C_AN
each node could be a router for receiving and forwarding and Chord do not support range search, it would be difficult
other users’ packets, incentives for router nodes are re-to apply them to finding the best complementary order in a
quired. These methods provide incentive-based resourcénarket based resource trading system.
sharing techniques where packet forwarding services at On the other hand, Meghdoot supports range search.
router nodes are traded among service users at auctions. However, it does not support a selection mechanism, for ex-

The above existing methods focus mainly on achieving @mple, to find a complementary sell-order with the lowest
self-stabilization for restraining greedy users by keeping aprice. So, a Cllent. has to receive all of SearCh'l’eSU'ltS to find
balance of allocated resources among users. Our proposef)e best one. This may lead to poor scalability, since data
method is different from these methods since our methodSize of search results increases as the number of sell orders
allows users to trade any amount and any combinations offetained in market servers increases. .
resources in PC Grid systems for their personal purposes Our proposed method is different from these existing
using the market mechanism. methOdS In terms .Of the .eﬁ:|C|ency to f|nd the beSt -Com'
PC Grid Systems such as Popcorn [4], Java Market[5] andachieved by replicating the orders with the lowest (highest)
JaWsSI[6]. In these methods, buyers of resources describérice in multiple market servers in prior to other orders.
their applications in Java language, and register them to
node cgﬂed thenarket serverOgn tr?e other hagnd, sellers of 3 Framework for Market-based Resource
resources execute these applications as Java applets by fol-  Sharing
lowing URLSs registered on the market server. The market
server also conducts operations for uploading and down-
loading the application programs as well as for matching
and retaining buy-orders and sell-orders. On the other hand
in [7], a scheduling system named Nimrod-G is proposed to
solve a problem with time constraints in a given budget.

The above existing methods implement the market server3-1  Components of our framework
as a simple client-server system. There are no detailed conResource seller
sideration to improve scalability of the market server orto  Each seller receives a revenue by offering his/her compu-
assign user nodes for the market server autonomously. Outational resource to a buyer. Here, we treat only the follow-
approach is different from the existing methods in the senseing four types of resources: CPU power (in MIPS), memory
that we provide an autonomous and distributed architectureamount (in MB), disk amount (in GB) and network band-
for achieving the market server. width (in Kbps). Each seller represents his/her resource by

In this section, we describe outline of our resource shar-
ing framework. We show the structure of our framework in
Fig. 1. The framework consists of multiple sellers and buy-
ers and a market broker consisting of multiple server nodes.



a quadrupler = (r1,7r2,73,74), Wherery, o, r3 andry C5 (selection policy for buy-order) Whem receives a

denote CPU power, memory amount, disk amount and net-  new buy-orden® and there are multiple sell-orders in
work bandwidth, respectively. He/she also specifies the sell- S(m) which can match te®, one with the lowest sell
ing priceSell Price of r, and the time period defined by be- price is selected.

ginning time SellStart and ending timeSell End, during
which r is available. Each sell-ordef can be represented ceives a new sell-order and there are multiple buy-

by 0* = (r, Sell Price, SellStart, Sell End). orders inB(m) which can match t@®, one with the
Resource buyer highest buy price is selected.

Each buyer pays a fee for using computational resources \yhen the market broker receives a new order, it checks
offered by a seller (a set of sellers) to execute his/her task(s)yhether the order satisfies conditions C1-C4 or not. If there
Each task is represented as a combination of the follow-ig no complementary order satisfying the conditions, the or-

ing values: a set of computational resources (denoted byger is retained i5(m) or B(m). Otherwise, it selects one
p) required to execute the task, the time duration (denoted,qer pased on condition C5 or C6.

by FxzecDuration) for completing task execution, and the

C6 (selection policy for sell-order) Similarly, when re-

deadline (denoted beadline) of the task execution. One-to-many matching condition -

The set of required computational resourpds speci- ~ When a buyer wants to execute a task requiring rela-
fied by a quadruplép;, p2, ps, p4) Similarly to the case of  tively large computation resources, it may be difficult to find
sellers. For example, a task with= (2000, 64, 0.3, 500), a sell-order which satisfies conditions C1-C4 for the buy-

ExecDuration = 3600s, andeadline = 9:00PM on Dec- order. If such a task can be divided into subtasks and those
01-2004 requires resources more than 2000MIPS of CPUsubtasks can be executed on different PCs, the availability
power, 64MB of memory space, 0.3GB of disk space and of resources would be improved to a great extent. So, we
500kbps of network bandwidth, takes 3600 seconds to com-extend our method to find the appropriate set of sell-orders
plete its execution and must be completed until 9:00PM on Whose sum of resources satisfies the conditions specified in
Dec-01-2004. He/she also specifies a budgyey Price for a buy-order.
the task and program/data code (or a pointer to the code) Let O’ denote a buy-order includingn sub
Clode of the task. Each buy-ordef can be represented by tasks (here,n > 2). We defineO® by Ob.p =
o® = (p, BuyPrice, ExecDuration, Deadline, Code). {(0%.p1,08.pa, ...; 08.14), ..., (08 .1, 08 .2, ...y O .pa) ),

When a buyer wants to use a certain amount of resourcesO®. ExecDuration, O°.Deadline, OY.BuyPrice, and
from sellers, first he/she registers a buy-oraeto the mar-  O°.Code = {codey, ..., code,,}.

ket broker. Here, we assurpe thazt ther% arEaszks where-th task re-
quires resource®; .p1, 0;.p2, 0; .p3, 0, .p4) t0O €Xecute pro-
Market broker gram/data codeode;, all tasks have the execution dura-

The market broker receives orders from multiple sellers tions and deadlines smaller thad. ExecDuration and

and buyers, and finds the pair of complementary orders sat--, . . 3 e
isfying the conditions defined in Sect. 3.2. The matching gségig(i)llljger'erseé)suprﬁgg\?%lyaililqgsisbudga -BuyPrice Is

of orders is conducted in the same way as the stock marke b .

at NYSE. That is, when the market broker receives a new ., FOf €ach buy-ordeD®, if there exists a set of sell-orders
order, it searches the best (e.g., the cheapest sell-order fof = 191: gﬁ} satisfying the following four conditions,
a new buy-order) complementary order of all orders satis- We say tha” and;5 canmatchto each other.

fying the conditions which are retained in its repository. If b1 v; ¢ (1 9 Vi 1.9 AV (s < 051

the broker finds the appropriate complementary order for e {1,2,n}, .Z €{L,2,.., } (07.pj < 0f.1j)

the new order, it sends the matching result to the seller andP2 Vi € {1,2,....n} O".EvecDuration <

buyer. If there are no complementary orders, the new order 0;.SellEnd — of .SellStart

is retained in the repository of the broker. D3 Vi € {1,2,...,n} O’.Deadline < of.Sell End

D4 O.BuyPrice > Y i, oi.Sell Price

3.2 Matching Condition . If there is no set of sell-orders satisfying conditions D1-
For each buy-ordes” and each sell-order*, if the fol- D4 for O°, the market broker retain®® until such a set

lowing four conditions hold, we say thaf and o® can becomes available.

matchto each other.

Cl Vi€ {1,2,3,4} (o*.p; < 0°.14) 3.3 Task execution and payment

C2 o°.ExecDuration < o°.SellEnd — o°.SellStart When the broker matched a new order to the appropri-
b . s o ate complementary order, program code and data for the

C3 0" Deadline < o b'S ellEnd buyer's task are transferred to the seller’s PC to be executed.

C4 0°.Sell Price < o”.BuyPrice When transferring code, the following security problems

LetS(m) andB(m) denote the set of sell-orders and the may occur: (i) the buyer may send malware to the seller’s

set of buy-orders which a market brokerretains, respec- - (i) the seller may steal important information by ob-
tively. We introduce the following two additional conditions S€rVingd task execution or may return forged computation re-

to select the best order if multiple orders satisfy conditions SUlts to the buyer. To prevent the above problem (i), we can
C1-C4. introduce the sandbox mechanism used by java applets. In



order to prevent the problem (ii), we can use voting or spot-

In our algorithm, matching a new buy-order to an exist-

checking techniques proposed in [14]. Also, some tech-ing sell-order retained by the market broker is symmetric to
nigues in Trusted Computing [15] can be used to improve matching a new sell-order to an existing buy-order. Below,

security.

we explain our algorithm using the former case.

When execution of task completes and results are sent to
the buyer, the buyer must pay a fee to the seller. This cang 2 Dividing Order Space into Subregions

also safely be achieved with a tamper resistant execution

environment as described in [9].

3.4 Outline of Our Distributed Architecture

As the number of orders from buyers and sellers in-
creases, load of the market broker increases. So, we pro-

Let M be the number of server nodes in the set of server
nodes{mi,ma,...,mpr}. In our method, we divide the
whole regionR into M subregions. One server node is as-
signed to each subregion. LBt be the subregion for which
the server node:; is responsible (Fig. 2).

When a user registers a new orden the market broker,

pose a distributed architecture for making the market brokerit sendso to one of server nodes, say,,. We suppose that

scalable using the following policies:

(1) use multiple nodes (calleserver nodeshereafter) to
implement the market broker.

(2) choose server nodes from sellers autonomously.

each user knows at least one server node in advance. Then,
m, forwardso to an appropriate server node;, such that

0.7 € Ry. This forwarding can be achieved with an existing
distributed lookup service of CAN [11]. When each server
nodem,; received a new order ando is not in the its sub-

(3) when some server nodes are overloaded, new servefeqion[min;, maz;], m; finds the neighbor node; so that

nodes are dynamically allocated and orders are dis-
tributed among these server nodes in order to increas

scalability.

the central coordinate of sub-regipnin;, maz;| is closest

&o o.77in terms of Euclid distance among all neighbor nodes,

and forwardso to m;. In order to implement the above

The above (2) can be achieved by letting users of thelookup mechanism, we let each server nodekeep regions
matched orders pay a commission fee. The fee is used t@nd IP addresses of neighbor nodes as well as its own region
buy resources for managing the operations of the marketin R. Transmission of an order fromm, to m; requires
broker from resource sellers. Therefore, every user has arO(dM'/¢) hops in average [11].

incentive to be a server node.

When server noden, receives buy-ordes® such that

The above (3) can be achieved by dynamically dividing b ;7 ¢ R, it searches a sell-order which satisfies conditions
the order space into multiple sub spaces and by assigningc1-c4in Sect. 3.2 fos?. If there is no sell-orders satisfying

server nodes to sub spaces one-to-one so that the numb

of orders in each sub space is always less than a specifi
threshold.

In the following sections, we focus especially on the
above (1).

server nodes.

4 Distributed Market Broker Architecture

We solve the problem using replicas of or-
ders and a protocol to efficiently propagate replicas among

‘gue conditions fop?, it appends?® to the set of waiting buy-
€OrdersB(m,) as described in Sect. 3. Similarly, when

receives sell-ordes® and there is no buy-orders satisfying
the conditions foro®, it appendso® to the set of waiting
sell-ordersS(m;).

With this approach, if orders are received b server
nodes uniformly, we can expect that the load of each server
node is reduced tb/M compared with the case with a sin-

gle server node. However, if a buy-ordérand a sell-order

In this Section, first we eXplain the algorithm for the case o® are received by different server nodeS, respecti\lély,
that one buy|ng order matches one Se”ing order. Then, Weand o cannot be matched. For examp|e, in the case of

present extension for one-to-many matching in Sect. 4.6.

4.1 Representation of Orders

For each buy-ordes” and sell-ordep®, conditions C1-
C3in Sect. 3.2 can be represented as follows.

Vi€ {1,...,6} (" v; < o®.w;) )
wherevi € {1, ...,4} o®.v; = o®.p;, 0%.v; = 0°.r;, 0®.v5 =
ob.ExecDuration, 0®.vs = 0°.SellEnd — o®.SellStart,
o’.vg = 0. Deadline, ando®.vg = 0°.Sell End. In expres-
sion 1, the range afis in general 1, ..., d}, whered is the
number of resources. Hereafter, we derfotev,, ..., 0”.v,)
and(o®.v1, ..., 0°.v4) by o’.7 ando®.7, respectively.

For each value of, we assume that the possible value
range ofo®.v; ando®.v; is decided in advance. We denote
the range a$min; : max;]. Each ordew can be repre-
sented as a point in @& dimensional spac& = [min; :
mazxy] X ... X [ming : mazy), sinceo.v € R. We callR
thewhole region Hereafter, we explain the case with= 2.

o".7 € R; ando®.7 € Rg, o” ando® are received by server
nodesm; andms, respectively. Thus® ando® cannot be
matched even though they satisfy conditions C1-C4. We
cope with this issue by replicating some orders in multiple
server nodes.

4.3 Order Replication

We explain our order replication algorithm using an ex-
ample. First, let us suppose that only one sell-okgfeis
registered in a server node;. Thevalid regionof a sell-
ordero® is defined as(0®) = [min; : 0°.v1] X [ming :
0°.v3] X ... X [ming : 0°.v4]. 0f’s valid region is depicted
as a rectangle in Fig. 3. In Fig. 3 to 6, each number in the
parenthesis (e.gof (40)) represents the selling price of the
corresponding order.

Now, suppose that a new sell-ordérhas arrived at the
server nodeng. If o§'s valid region spreads over the set
of server node$m,, ms, mz, mg, mg} as shown in Fig. 4.
We make these server nodes hold replicas of the afler



S N - - S
© © ©
g | R1 ass- : g J ' S
ignedtoi Rz | A3
my P . .
R4 Rs5 Re

g ) Sl

g : : g S el t
min1 ‘ ' max1 min1 max1 min1 max1
Figure 2. Server node al- Figure 3. Sell-order of Figure 4. Sell-order of
location to each subre- registered to server and o5 registered to
gion nodes server nodes

Next, we suppose that a new sell-ordé¢rhas arrived at  own the neighbor regions af:; towards the coordinate
the server noden, and thato3’s valid region spreads over  (miny, ..., ming) in R. When the sub valid region of;
the set of server nodg{s,, m4, ms, m7, ms} as shownin  ando;, overlapson R; andoj.Sell Price < o5.Sell Price
Fig. 5. holds, overlapped sub valid regionreamovedrom the sub
In this case, however, server nodes andms do not  vajid region ofo?. That means? is not propagated to
need to hold replicas ob3. if a buy-order with price  ,o5e gverlapped sub regions any more (e.g., in Fig. 5, sub
more than 80 is received by, or mg, the order first g region ofo is removed onn; andmsg by o). The
matches to ordas; sinceo3.SellPrice = 80is lowerthan = seryer noden, checks whether the sub valid region @
o3.Sell Price = 90. Thus, we make the set of server nodes ig removed on each downstream adjacent server by the sell-
{ma,m4, ms} hold replicas of the order;. _ . orders retained byn;, and if unremoved sub valid region
The details of our replication protocol is explained in found, m; sends messagepl(o®,m;) to the downstream
Sect. 4.5. adjacent server node. Each replication message contains
the content ob* and the pointer to its original server node.
4.4 Order Matching and Deletion When each server node receives replication messages for
. 0%, it checks whether the sub valid regions6fire removed
Letus suppose thata neV\g buy-ordghas beegn received on each downstream adjacent serve?node, and if unremoved
by server ncS)denﬁ and thatoy has matched {05, Then,  gup valid region found, replication messages are forwarded
we removep; from mg. Also, we remove ordes;’s repli- to the downstream adjacent server nodes similarly.
cas from the set of server r.‘Od{a'sl‘i’m&m?’m&mg} as For example, when a new sell-ordej has arrived at
shown in Fig. 6. After deletion of the orde$, orderos be- server nodeng in Fig. 7, replication messages fof are

comes ready to match to buy-orders arriving at server n‘?despropagated as shown in Fig. 7. First, server nogesends
my7 andmg. S0, we make these server nodes hold rep"casreplication messageepl (05, mg) to server nodesns and

of 5. , mg. Next, these servers forward the replication messages
Let us suppose that a new buy-ordgrhas arrived at o server nodes:, andms. Finally, these server nodes for-

server nodemg while the replicas of ordeo; are being  \ard the messages to server node

deleted after matching af; ando®. In that casep’ may .

match the replica o3 in server nodens, althougho; has Deletion message

already matched to} and been removed fromg. In order First, let us suppose that a new buy-ordesatisfies the

to keep consistency, when a server node matches an order teonditions with a replica of order at server noden;. As

a replica, we let the server node check if the original order we explained in Sect. 4.4, before each server node matches

exists or not. To do so, we attach the pointer to the original an order to the replica, the server node checks if the original

order in each replica. order exists or not. In this case, only if the original order of
o° exists,o® can match to its replica at server node, and
4.5 Protocol for Order Replication and Deletion consequently, the original and the replicavdfare deleted.
. Here, however, some replicas of may be left at
In our protocol, we use messageg! anddel for repli- other server nodes. So, when original ordeiis deleted,
cation and deletion of an order, respectively. we let its server node (sayp;) send deletion messages
Replication message del(o”,m;) to its downstream adjacent server nodes sim-
When a server node; receives a new sell-order, it ilarly to the case of replication messages.
calculates thesub valid regionon eachdownstream adja- When each server node,. receives a deletion message
cent server nodesf the ordero®. Here, sub valid region  for replicas of an ordes®, it finds an sell-ordeo* with the
on m; of o® is defined asR(0®) N R;. And, the down-  lowest price in the se$(m;) — {0°} and sends replication

stream adjacent server nodesef are server nodes which messages af* to downstream adjacent server nodes.
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Introduction of time slot matchmessages from all server nodes where the sub-buy-

In the above protocol, when a large number of orders areorders were sent an@’. Buy Price > >, 0§ .Sell Price
arrived or matched to complementary orders at one serverholds, he/she sends thenfirmationmassage back to those
node in a short time period, the server node may be over-server nodes. If the buyer’s budget is less than the sum of
loaded due to operations for transmitting replication mes- the selling prices, the fact is shown to the buyer to prompt
sages. In order to mitigate this problem, we introduce a him/her to raise the budget.
constant time slof” to aggregate replication and deletion When each server node receives tomfirmationmes-
messages generated/received during every time intéfval - sage for a tentative match which it retains, it checks whether
into a single message. Consequgently, only one message ighe original order still exists or not, similarly to the one-to-
sent to each adjacent server per time slot. ~one matching case. If the original order still exists, the or-

When using a time slot, messages are transmittedder is confirmed and thack message is sent to the buyer.
as shown in Fig. 7. Each server node receives or-Otherwise, the server node finds another sell-order which
ders/replication messages during time ot In the next  tentatively matches to the sub-buy-order, and sertdsta-
time slot, replication messages of the orders are sent toive matchmessage to the buyer. Here, note that the order
downstream adjacent servers. which has been confirmed cannot be tentatively matched to

However, using a large time slot may introduce large other orders.
time lag of arrival times at server nodes far from the node  |f the buyer has received theck messages from all the
which received the original order. That causes different re- geryer nodeg)? finally matches to the set of the sell-orders
sults from the case using a single node for the market bro-5,q the buyer sendsommitmessage to the server nodes.
ker. However, we think that the difference is not so seri- when each server node receives trwmmit message, it
ous. In general, the selling/buying price increases as thegyecytes the similar operations to the one-to-one matching

se(ljlmg/ b“y'lr(‘jg amo#nt 0{] resqu_rcels Increaseds. S0, most Ofcase. |f the buyer receives ttentative matcimessages in-
orders would match on the original server node or on serverstead ofack messages from some server nodes, it tries to

nodes near from the original. confirm them again.
] If the buyer does not receive tlaek messages from all
4.6 One-to-many Order Matching the server nodes for a specified time period, it sends the

cancelmessage to them to make the confirmed orders free.

; ) . 5 b
We suppose that there dssub-tasks in a buy-orde”. In this case, the buyer tries to register the ox@&from the

b b - - s .
Let {0}, ...,0.,} denote the set of buy-orders for the sub scratch after a certain time period.

tasks. We call each] sub-buy-order As we defined in In the above algorithm, if multiple buyers register buy-
Sect. 3.2, only the total budget is specifieddf to buy  orders with more than one sub-tasks and try to confirm their
resources forn sub-tasks. So, we registersub-buy-orders tentative matches simultaneously, there wili be a conflict be-
in the market broker as independent orders, leaving theiryween confirmations for competing some common orders.
BuyPrice fieldsundefined _ For example, suppose that userl and user2 registered buy-
When a server nodey; such thab”.v € R receives @ ordersO? andO and that they have tentatively matched to
new order? such thab?. Buy Price =undefinedm; finds the sets of sell-orderss, 03, 05} and{o3, 05, 05}, respec-
a sell-ordemw; with the lowest price which satisfies expres- tively. Then, suppose that userl and user2 sentondir-
sion 1, andtentativelymatches togli’_ Here, the tentative  mationmessages at the same time and that the correspond-
match means that the server node just retains the state of thing server nodes received the confirmationdbfrom userl
matching until receiving theonfirmationmessage without  earlier than user2 and the confirmatigifrom user2 earlier
removing the order as a result of this matching. In this case,than userl. In this case, neither userl nor user2 can receive
m; sends the buyer thentative matchmessage with the  theackmessages from all the server nodes.
value ofof.SellPrice. If the buyer receives thtentative To avoid this problem, we adopted a policy that each



buyer confirms tentative matches sequentially (i.e., it sendsuse our distributed architecture, the valuelofis not al-
the confirmation message to the next server node after reways maximized since there is a propagation delay of orders
ceiving the ack message from the previous one) in increas-among server nodes. Let us define the satisfaction degree of

ing order of server nodes’ IP addresses. each matching as = D /D¢, where D¢ is the maxi-
) mum value of D when a single server node is used, and
5 Experimental Results Dy, is the value ofD when our architecture is used. Here,

We conducted simulations on a PC in order to evaluate 0 < Dz < Dg. We suppose thaf = 1 whenD¢ = 0. We
to what extent our distributed architecture can mitigate eachmeasured average valuesfor both cases, changing the
server load. We measured the average number of messagdd!mber of server nodes between 1 and 625 and a time slot
processed by each server by changing the number of servelom 0 to 10000ms. We used the same parameter values as
nodes from 1 to 625. previous experiments. The result is shown in Fig. 10.

The messages received and forwarded by server nodes Fig. 10 shows that our architecture achieves almost the
consist of the following: (1) buy-orders and sell-orders sent Same satisfaction degrees (more than 0.95) as the single
from users, (2) replication messages for orders and (3) delesServer node case for any number of server nodes. We see
tion messages for orders and replicas. In the simulation,that the satisfaction degrees decrease when increasing the
30000 orders (here, each order could be a buy-order or dime slot interval. This is caused by the propagation delay
sell-order at 1/2 probability) were sent to server nodes. TheOf replicas among server nodes. We can improve the perfor-
number of resource types was 2, and the amount to sell ofmance by propagating top+eplicas among server nodes,
buy each resource was given by uniform random values be.Wh_ere’n is the number of orders to be selected for the I’epll-
tween 0 and 100. We used the same size for all server nodestation. . _
responsible sub-regions, and decided the message delay be- We also conducted the following experiment to evalu-
tween server nodes at random between 10 to 160 ms. Sellate efficiency of one-to-many order matching method de-
ing price (buying price) was determined at random accord- Scribed in Sect. 4.6. We measured probabilities in which
ing to a Gaussian distribution whose mean and standard deall buy-orders are matched to sell-orders under the follow-
viation are(v; + v2) and 30, respectively. Here; denotes  ing two conditions. In the first conditiom, buy-orders are
the amount of-th resource to sell or buy. registered to the market servers as sub-buy-orders using the

We generated orders according to Poisson Arrival so thatmethod described in Sect. 4.6. In this case, the buyer’s
they arrive at server nodes every 10ms on average. The tim&udget is the sum of alBuy Price of n buy-orders (buying
slot was set to 1000ms. The experimental results are showrprice of each buy-order was determined by same settings
in Fig. 8. Fig. 8 also shows the average number of message&s the above experiments) and matching fails if sum of all
at each server node, and the maximum and minimum num-SellPrice of complementary sell-orders exceeds buyer's
bers of messages per one server node of all server nodes. budget or the buyer does not receive thek messages

Fig. 8 shows that the number of messages processed bjfom all the server nodes. In the second condition (sim-
each server node can be reduced significantly by increasingle method)y buy-orders (buying price was determined by
the number of server nodes. We can see that the load ighe same settings of the first condition) are simply regis-
balanced among server nodes uniformly, since the deviationtered to the server nodes as independent orders. In this case,
between the maximum and minimum numbers of messagegnatching fails if there is a buy-order which is not matched
and the average number is not so large in Fig. 8, complementary sell-order. We generated 15000 sell-orders,

Next, we investigated the impact by introducing message 13500 buy-orders which do not include sub-buy-orders, and
aggregation in a time slot. We measured average number ofL500 buy-orders including sub-buy-orders. The probability
replication and deletion messages received per second bylistribution of the number of sub-buy-orders is exponential
each server node by changing length of a time slot from distribution whose average value is 10. Length of time slot
0 to 10000ms. We used the same parameter values as th&as set to 1000ms. The number of server nodes is changed
previous experiment. We show the result in Fig. 9. between 1 to 625. The results are shown on Fig. 11.

Fig. 9 shows that we can reduce the number of control  Fig. 11 shows that our method achieves higher matching
messages processed at each server node per second fropriobability than simple method regardless of the number of
0.65 to 0.45 by increasing the time slot up to 10sec. server nodes.

Next, we investigated the difference of matching results
between the case with a single server and the case with mulg Conclusion
tiple server nodes. In this experiment, we defined the user’s
satisfaction degre# as follows, and we compared the dif- In this paper, we proposed a distributed architecture for
ference in the value of. a market broker which allows users to trade their resources

According to conditions C5 and C6 in Sect. 3.2, when based on the market mechanism. With the proposed archi-
a buyer (a seller) sends an order to the market broker, it istecture, each user can buy/sell a resource from/to the other
desirable for the buyer (the seller) to match to a sell-order user and also buy a larger amount of resource from multiple
with lower price (a buy-order with higher price). Let us de- users by one order.
fine D = oy.buyPrice — oy.s¢ell Price if 01 is a buy-order As we saw in Sect. 5, we confirmed that the proposed
or D = oy.buyPrice — 01.sell Price if o1 is a sell-order.  architecture is extremely scalable to the number of orders
If we use a single server node for the market broker, the when using one-to-one matching for orders, and it greatly
complementary order which maximizes the valuelbis increases the availability of resources using the proposed
always selected to match tg. On the other hand, if we  one-to-many matching mechanism. Since we currently use
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fixed ranges for subregions, a server node could be over- [8] J.Bredin, D. Kotz and D. Rus: Market-based Resource Con-
loaded temporarily by receiving a lot of orders in a short
time period. If such overloaded situation lasts for a while,
the subregion should dynamically be divided to multiple re-
gions recursively. Implementation of such a dynamic divi-
sion mechanism is part of future work.
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